scholarly journals Examining Southern Ocean Cloud Controlling Factors on Daily Time Scales and Their Connections to Midlatitude Weather Systems

2019 ◽  
Vol 32 (16) ◽  
pp. 5145-5160 ◽  
Author(s):  
Mitchell K. Kelleher ◽  
Kevin M. Grise

ABSTRACTClouds and their associated radiative effects are a large source of uncertainty in global climate models. One region with particularly large model biases in shortwave cloud radiative effects (CRE) is the Southern Ocean. Previous research has shown that many dynamical “cloud controlling factors” influence shortwave CRE on monthly time scales and that two important cloud controlling factors over the Southern Ocean are midtropospheric vertical velocity and estimated inversion strength (EIS). Model errors may thus arise from biases in representing cloud controlling factors (atmospheric dynamics) or in representing how clouds respond to those cloud controlling factors (cloud parameterizations), or some combination thereof. This study extends previous work by examining cloud controlling factors over the Southern Ocean on daily time scales in both observations and global climate models. This allows the cloud controlling factors to be examined in the context of transient weather systems. Composites of EIS and midtropospheric vertical velocity are constructed around extratropical cyclones and anticyclones to examine how the different dynamical cloud controlling factors influence shortwave CRE around midlatitude weather systems and to assess how models compare to observations. On average, models tend to produce a realistic cyclone and anticyclone, when compared to observations, in terms of the dynamical cloud controlling factors. The difference between observations and models instead lies in how the models’ shortwave CRE respond to the dynamics. In particular, the models’ shortwave CRE are too sensitive to perturbations in midtropospheric vertical velocity and, thus, they tend to produce clouds that excessively brighten in the frontal region of the cyclone and excessively dim in the center of the anticyclone.

2016 ◽  
Vol 29 (24) ◽  
pp. 9005-9025 ◽  
Author(s):  
Kevin M. Grise ◽  
Brian Medeiros

Abstract This study examines the dynamical mechanisms responsible for changes in midlatitude clouds and cloud radiative effects (CRE) that occur in conjunction with meridional shifts in the jet streams over the North Atlantic, North Pacific, and Southern Oceans. When the midlatitude jet shifts poleward, extratropical cyclones and their associated upward vertical velocity anomalies closely follow. As a result, a poleward jet shift contributes to a poleward shift in high-topped storm-track clouds and their associated longwave CRE. However, when the jet shifts poleward, downward vertical velocity anomalies increase equatorward of the jet, contributing to an enhancement of the boundary layer estimated inversion strength (EIS) and an increase in low cloud amount there. Because shortwave CRE depends on the reflection of solar radiation by clouds in all layers, the shortwave cooling effects of midlatitude clouds increase with both upward vertical velocity anomalies and positive EIS anomalies. Over midlatitude oceans where a poleward jet shift contributes to positive EIS anomalies but downward vertical velocity anomalies, the two effects cancel, and net observed changes in shortwave CRE are small. Global climate models generally capture the observed anomalies associated with midlatitude jet shifts. However, there is large intermodel spread in the shortwave CRE anomalies, with a subset of models showing a large shortwave cloud radiative warming over midlatitude oceans with a poleward jet shift. In these models, midlatitude shortwave CRE is sensitive to vertical velocity perturbations, but the observed sensitivity to EIS perturbations is underestimated. Consequently, these models might incorrectly estimate future midlatitude cloud feedbacks in regions where appreciable changes in both vertical velocity and EIS are projected.


2015 ◽  
Vol 28 (23) ◽  
pp. 9298-9312 ◽  
Author(s):  
Kevin M. Grise ◽  
Lorenzo M. Polvani ◽  
John T. Fasullo

Abstract Recent efforts to narrow the spread in equilibrium climate sensitivity (ECS) across global climate models have focused on identifying observationally based constraints, which are rooted in empirical correlations between ECS and biases in the models’ present-day climate. This study reexamines one such constraint identified from CMIP3 models: the linkage between ECS and net top-of-the-atmosphere radiation biases in the Southern Hemisphere (SH). As previously documented, the intermodel spread in the ECS of CMIP3 models is linked to present-day cloud and net radiation biases over the midlatitude Southern Ocean, where higher cloud fraction in the present-day climate is associated with larger values of ECS. However, in this study, no physical explanation is found to support this relationship. Furthermore, it is shown here that this relationship disappears in CMIP5 models and is unique to a subset of CMIP models characterized by unrealistically bright present-day clouds in the SH subtropics. In view of this evidence, Southern Ocean cloud and net radiation biases appear inappropriate for providing observationally based constraints on ECS. Instead of the Southern Ocean, this study points to the stratocumulus-to-cumulus transition regions of the SH subtropical oceans as key to explaining the intermodel spread in the ECS of both CMIP3 and CMIP5 models. In these regions, ECS is linked to present-day cloud and net radiation biases with a plausible physical mechanism: models with brighter subtropical clouds in the present-day climate show greater ECS because 1) subtropical clouds dissipate with increasing CO2 concentrations in many models and 2) the dissipation of brighter clouds contributes to greater solar warming of the surface.


2018 ◽  
Vol 18 (2) ◽  
pp. 1395-1417 ◽  
Author(s):  
Tianyi Fan ◽  
Xiaohong Liu ◽  
Po-Lun Ma ◽  
Qiang Zhang ◽  
Zhanqing Li ◽  
...  

Abstract. Global climate models often underestimate aerosol loadings in China, and these biases can have significant implications for anthropogenic aerosol radiative forcing and climate effects. The biases may be caused by either the emission inventory or the treatment of aerosol processes in the models, or both, but so far no consensus has been reached. In this study, a relatively new emission inventory based on energy statistics and technology, Multi-resolution Emission Inventory for China (MEIC), is used to drive the Community Atmosphere Model version 5 (CAM5) to evaluate aerosol distribution and radiative effects against observations in China. The model results are compared with the model simulations with the widely used Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) emission inventory. We find that the new MEIC emission improves the aerosol optical depth (AOD) simulations in eastern China and explains 22–28 % of the AOD low bias simulated with the AR5 emission. However, AOD is still biased low in eastern China. Seasonal variation of the MEIC emission leads to a better agreement with the observed seasonal variation of primary aerosols than the AR5 emission, but the concentrations are still underestimated. This implies that the atmospheric loadings of primary aerosols are closely related to the emission, which may still be underestimated over eastern China. In contrast, the seasonal variations of secondary aerosols depend more on aerosol processes (e.g., gas- and aqueous-phase production from precursor gases) that are associated with meteorological conditions and to a lesser extent on the emission. It indicates that the emissions of precursor gases for the secondary aerosols alone cannot explain the low bias in the model. Aerosol secondary production processes in CAM5 should also be revisited. The simulation using MEIC estimates the annual-average aerosol direct radiative effects (ADREs) at the top of the atmosphere (TOA), at the surface, and in the atmosphere to be −5.02, −18.47, and 13.45 W m−2, respectively, over eastern China, which are enhanced by −0.91, −3.48, and 2.57 W m−2 compared with the AR5 emission. The differences of ADREs by using MEIC and AR5 emissions are larger than the decadal changes of the modeled ADREs, indicating the uncertainty of the emission inventories. This study highlights the importance of improving both the emission and aerosol secondary production processes in modeling the atmospheric aerosols and their radiative effects. Yet, if the estimations of MEIC emissions in trace gases do not suffer similar biases to those in the AOD, our findings will help affirm a fundamental error in the conversion from precursor gases to secondary aerosols as hinted in other recent studies following different approaches.


2021 ◽  
Author(s):  
Isabel L. McCoy ◽  
Daniel T. McCoy ◽  
Robert Wood ◽  
Christopher S. Bretherton ◽  
Leighton Regayre ◽  
...  

<div> <p>The change in planetary albedo due to aerosol-cloud interactions (aci) during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. Examining pristine environments such as the Southern Ocean (SO) helps us to understand the pre-industrial state and constrain the change in cloud brightness over the industrial period associated with aci. This study presents two methods of utilizing observations of pristine environments to examine climate models and our understanding of the pre-industrial state.</p> </div><div> <p>First, cloud droplet number concentration (<em>N<sub>d</sub></em>) is used as an indicator of aci. Global climate models (GCMs) show that the hemispheric contrast in liquid cloud <em>N<sub>d</sub></em> between the pristine SO and the polluted Northern Hemisphere observed in the present-day can be used<strong> </strong>as a proxy for the increase in <em>N<sub>d</sub></em> from the pre-industrial. A hemispheric difference constraint developed from MODIS satellite observations indicates that pre-industrial <em>N<sub>d</sub></em> may have been higher than previously thought and provides an estimate of radiative forcing associated with aci between -1.2 and -0.6 Wm<sup>-2</sup>. Comparisons with MODIS <em>N<sub>d  </sub></em>highlight significant GCM discrepancies in pristine, biologically active regions.</p> </div><div> <p>Second, aerosol and cloud microphysical observations from a recent SO aircraft campaign are used to identify two potentially important mechanisms that are incomplete or missing in GCMs: i) production of new aerosol particles through synoptic uplift, and ii) buffering of <em>N<sub>d</sub></em> against precipitation removal by small, Aitken mode aerosols entrained from the free troposphere. The latter may significantly contribute to the high, summertime SO <em>N<sub>d</sub></em> levels which persist despite precipitation depletion associated with mid-latitude storm systems. Observational comparisons with nudged Community Atmosphere Model version 6 (CAM6) hindcasts show low-biased SO <em>N<sub>d  </sub></em>is linked to under-production of free-tropospheric Aitken aerosol which drives low-biases in cloud condensation nuclei number and likely discrepancies in composition. These results have important implications for the ability of current GCMs to capture aci in pristine environments.</p> </div>


2004 ◽  
Vol 4 (7) ◽  
pp. 1885-1893 ◽  
Author(s):  
N. Riemer ◽  
H. Vogel ◽  
B. Vogel

Abstract. The aging of soot is one of the key uncertainties in the estimation of both the direct and indirect climate effect. While freshly emitted soot is initially hydrophobic and externally mixed, it can be transferred into an internal mixture by coagulation, condensation or photochemical processes. These aging processes affect the hygroscopic qualities and hence the growth behaviour, the optical properties and eventually the lifetime of the soot particles. However, due to computational limits the aging of soot in global climate models is often only parameterised by an estimated turnover rate resulting in a lifetime of soot of several days. Hence, the aging process of soot is one of the key uncertainties governing the burden and effect of black carbon. In this study, we discuss the time scale on which diesel soot is transferred from an external to an internal mixture based on the results of our simulations with a comprehensive mesoscale model. For daytime conditions during summer condensation of sulphuric acid is dominant and the aging process occurs on a time scale of τ =8h close to the sources and τ =2h above the source region. During winter comparable time scales are found but ammonium nitrate becomes more important. During night time condensation is not effective. Then coagulation is the most important aging process and our results show time scales between 10h and 40h.


2016 ◽  
Vol 121 (6) ◽  
pp. 3905-3925 ◽  
Author(s):  
Erik Behrens ◽  
Graham Rickard ◽  
Olaf Morgenstern ◽  
Torge Martin ◽  
Annette Osprey ◽  
...  

2015 ◽  
Vol 28 (15) ◽  
pp. 6001-6018 ◽  
Author(s):  
Shannon Mason ◽  
Jennifer K. Fletcher ◽  
John M. Haynes ◽  
Charmaine Franklin ◽  
Alain Protat ◽  
...  

AbstractA deficit of shortwave cloud forcing over the Southern Ocean is persistent in many global climate models. Cloud regimes have been widely used in model evaluation studies to make a process-oriented diagnosis of cloud parameterization errors, but cloud regimes have some limitations in resolving both observed and simulated cloud behavior. A hybrid methodology is developed for identifying cloud regimes from observed and simulated cloud simultaneously.Through this methodology, 11 hybrid cloud regimes are identified in the ACCESS1.3 model for the high-latitude Southern Ocean. The hybrid cloud regimes resolve the features of observed cloud and characterize cloud errors in the model. The simulated properties of the hybrid cloud regimes, and their occurrence over the Southern Ocean and in the context of extratropical cyclones, are evaluated, and their contributions to the shortwave radiation errors are quantified.Three errors are identified: an overall deficit of cloud fraction, a tendency toward optically thin low and midtopped cloud, and an absence of a shallow frontal-type cloud at high latitudes and in the warm fronts of extratropical cyclones.To demonstrate the utility of the hybrid cloud regimes for the evaluation of changes to the model, the effects of selected changes to the model microphysics are investigated.


2017 ◽  
Vol 30 (15) ◽  
pp. 5885-5900 ◽  
Author(s):  
Matthew D. Thomas ◽  
Alexey V. Fedorov

Global climate models frequently exhibit cold biases in tropical sea surface temperature (SST) in the central and eastern equatorial Pacific. Here, Lagrangian particle back trajectories are used to investigate the source regions of the water that upwells along the equator in the IPSL climate model to test and confirm the hypothesis that the SST biases are caused by remote biases advected in from the extratropics and to identify the dominant source regions. Water in the model is found to be sourced primarily from localized regions along the western and eastern flanks of the subtropical gyres. However, while the model SST bias is especially large in the northwestern subtropical Pacific (about −5°C), it is found that the eastern subtropics contribute to the equatorial bias the most. This is due to two distinct subsurface pathways connecting these regions to the equator. The first pathway, originating in the northwestern subtropical Pacific, has relatively long advection time scales close to or exceeding 60 yr, wherein particles recirculate around the subtropical gyres while descending to approximately 500 m before then shoaling toward the equatorial undercurrent. The second pathway, from the eastern subtropics, has time scales close to 10 yr, with particles following a shallow and more direct route to the equator within the upper 200 m. The deeper and longer pathway taken by the western subtropical water ensures that vertical mixing can erode the bias. Ultimately, it is estimated that relatively confined regions in the eastern subtropics of both hemispheres control approximately half of the equatorial bias.


Sign in / Sign up

Export Citation Format

Share Document