Origins of the IOD-like Biases in CMIP Multimodel Ensembles: The Atmospheric Component and Ocean–Atmosphere Coupling

2020 ◽  
Vol 33 (24) ◽  
pp. 10437-10453
Author(s):  
Shang-Min Long ◽  
Gen Li ◽  
Kaiming Hu ◽  
Jun Ying

AbstractPrevious studies reveal that the last generation of coupled general circulation models (CGCMs) commonly suffer from the so-called Indian Ocean dipole (IOD)-like biases, lowering the models’ ability in climate prediction and projection. The present study shows that such IOD-like biases are reduced insignificantly or even worsen in CGCMs from phase 5 to phase 6 of the Coupled Model Intercomparison Project (CMIP). The origins of the IOD-like biases in CGCMs are further investigated by comparing model outputs from CMIP and the Atmospheric Model Intercomparison Project (AMIP). The CGCMs’ errors are divided into the biases from the AMIP simulation (AMIP biases) and ocean–atmosphere coupling (coupling biases). For the multimodel ensemble mean, the AMIP (coupling) biases account for about two-thirds (one-third) of the IOD-like CMIP biases. In AMIP simulations, the South Asian summer monsoon (SASM) is overly strong; therefore, it could advect overly large easterly momentum from the south Indian Ocean (IO) to the equator. The resultant equatorial easterly wind bias would initiate the convection–circulation feedback and develop large IOD-like AMIP biases. In contrast, the coupling biases weaken the SASM and hence generate warm SST error over the western IO during boreal summer. Such SST error persists to boreal autumn and triggers the Bjerknes feedback, developing the IOD-like coupling biases. Furthermore, the intermodel spread in the IOD-like CMIP biases is largely explained by the intermodel differences in the coupling biases rather than the AMIP biases. The results imply that substantial efforts should be respectively made on reducing the atmospheric models’ intrinsic monsoon biases as well as advancing the simulations of ocean–atmosphere coupling processes.

2015 ◽  
Vol 28 (8) ◽  
pp. 3093-3098 ◽  
Author(s):  
Gen Li ◽  
Shang-Ping Xie ◽  
Yan Du

Abstract An open-ocean thermocline dome south of the equator is a striking feature of the Indian Ocean (IO) as a result of equatorial westerly winds. Over the thermocline dome, the El Niño–forced Rossby waves help sustain the IO basin (IOB) mode and offer climate predictability for the IO and surrounding countries. This study shows that a common equatorial easterly wind bias, by forcing a westward-propagating downwelling Rossby wave in the southern IO, induces too deep a thermocline dome over the southwestern IO (SWIO) in state-of-the-art climate models. Such a deep SWIO thermocline weakens the influence of subsurface variability on sea surface temperature (SST), reducing the IOB amplitude and possibly limiting the models’ skill of regional climate prediction. To the extent that the equatorial easterly wind bias originates from errors of the South Asian summer monsoon, improving the monsoon simulation can lead to substantial improvements in simulating and predicting interannual variability in the IO.


2011 ◽  
Vol 4 (4) ◽  
pp. 3047-3065
Author(s):  
R. S. Smith

Abstract. FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).


2010 ◽  
Vol 23 (5) ◽  
pp. 1240-1253 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Gabriel A. Vecchi ◽  
Qinyu Liu ◽  
Jan Hafner

Abstract Low-frequency modulation and change under global warming of the Indian Ocean dipole (IOD) mode are investigated with a pair of multicentury integrations of a coupled ocean–atmosphere general circulation model: one under constant climate forcing and one forced by increasing greenhouse gas concentrations. In the unforced simulation, there is significant decadal and multidecadal modulation of the IOD variance. The mean thermocline depth in the eastern equatorial Indian Ocean (EEIO) is important for the slow modulation, skewness, and ENSO correlation of the IOD. With a shoaling (deepening) of the EEIO thermocline, the thermocline feedback strengthens, and this leads to an increase in IOD variance, a reduction of the negative skewness of the IOD, and a weakening of the IOD–ENSO correlation. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to easterly wind anomalies in the equatorial Indian Ocean; the oceanic response to weakened circulation is a thermocline shoaling in the EEIO. Under greenhouse forcing, the thermocline feedback intensifies, but surprisingly IOD variance does not. The zonal wind anomalies associated with IOD are found to weaken, likely due to increased static stability of the troposphere from global warming. Linear model experiments confirm this stability effect to reduce circulation response to a sea surface temperature dipole. The opposing changes in thermocline and atmospheric feedbacks result in little change in IOD variance, but the shoaling thermocline weakens IOD skewness. Little change under global warming in IOD variance in the model suggests that the apparent intensification of IOD activity during recent decades is likely part of natural, chaotic modulation of the ocean–atmosphere system or the response to nongreenhouse gas radiative changes.


2014 ◽  
Vol 27 (4) ◽  
pp. 1765-1780 ◽  
Author(s):  
Gen Li ◽  
Shang-Ping Xie

Abstract Errors of coupled general circulation models (CGCMs) limit their utility for climate prediction and projection. Origins of and feedback for tropical biases are investigated in the historical climate simulations of 18 CGCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the available Atmospheric Model Intercomparison Project (AMIP) simulations. Based on an intermodel empirical orthogonal function (EOF) analysis of tropical Pacific precipitation, the excessive equatorial Pacific cold tongue and double intertropical convergence zone (ITCZ) stand out as the most prominent errors of the current generation of CGCMs. The comparison of CMIP–AMIP pairs enables us to identify whether a given type of errors originates from atmospheric models. The equatorial Pacific cold tongue bias is associated with deficient precipitation and surface easterly wind biases in the western half of the basin in CGCMs, but these errors are absent in atmosphere-only models, indicating that the errors arise from the interaction with the ocean via Bjerknes feedback. For the double ITCZ problem, excessive precipitation south of the equator correlates well with excessive downward solar radiation in the Southern Hemisphere (SH) midlatitudes, an error traced back to atmospheric model simulations of cloud during austral spring and summer. This extratropical forcing of the ITCZ displacements is mediated by tropical ocean–atmosphere interaction and is consistent with recent studies of ocean–atmospheric energy transport balance.


Author(s):  
N.A. Lemeshko ◽  
◽  
V.P. Evstigneev ◽  
A.P. Morozov ◽  
V.A. Rusakov ◽  
...  

The analysis of reliability and accuracy reproduction of air temperature, precipitation, and relative humidity of the air by 18 ocean-atmosphere general circulation models (GCMs) included in CMIP6 (Coupled Model Intercomparison Project) is performed. Based on statistical criteria, the best models that most accurately reproduce empirical data are selected. On the basis of these models, an ensemble of models is compiled. The calculation of several agro-climatic indicators for the European part of Russia is performed using an ensemble approach. The comparison of agro-climatic indicators calculated on the basis of the ensemble of models and observational data is carried out for the territory of the Upper Volga including Yaroslavl, Kostroma, Vologda, Novgorod and Tver regions. The feasibility of using the ensemble of models to assess agro-climatic conditions of the region is shown.


2021 ◽  
pp. 1-40
Author(s):  
Dipanjan Dey ◽  
Kristofer Döös

AbstractThe water sources and their variability responsible for the South Asian summer monsoon precipitation were analyzed using Lagrangian atmospheric water-mass trajectories. The results indicated that evaporated waters from the Central and South Indian Ocean are the major contributors to the South Asian summer monsoon rainfall, followed by the contribution from the local recycling (precipitated water that evapotranspirated from the South Asian landmass), the Arabian Sea, remote sources and the Bay of Bengal. It was also found that although the direct contribution originating from the Bay of Bengal is small, it still provides a pathway for the atmospheric water that come from other regions. This pathway is hence only crossing over the Bay of Bengal. The outcomes further revealed that the evaporated waters originating from the Central and South Indian Ocean are responsible for the net precipitation over the coastal regions of the Ganges-Brahmaputra-Meghna Delta, Northeast India, Myanmar, the foothills of the Himalayas and Central-East India. Evaporated waters from the Arabian sea are mainly contributing to the rainfall over the Western coast and West-Central India. Summer monsoon precipitation due to the local recycling is primarily restricted to the Indo-Gangetic plain. No recycled precipitation was observed over the mountain chain along the West coast of India (Western Ghats). The month-to-month precipitation variation over South Asia was analysed to be linked with the Somali Low Level jet variability. The inter-annual variability of the South Asian summer monsoon precipitation was found to be mainly controlled by the atmospheric waters that were sourced and travelled from the Central and South Indian Ocean.


2012 ◽  
Vol 5 (1) ◽  
pp. 269-276 ◽  
Author(s):  
R. S. Smith

Abstract. FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).


2006 ◽  
Vol 19 (16) ◽  
pp. 3989-4008 ◽  
Author(s):  
Martin Hoerling ◽  
James Hurrell ◽  
Jon Eischeid ◽  
Adam Phillips

Abstract The spatial patterns, time history, and seasonality of African rainfall trends since 1950 are found to be deducible from the atmosphere’s response to the known variations of global sea surface temperatures (SSTs). The robustness of the oceanic impact is confirmed through the diagnosis of 80 separate 50-yr climate simulations across a suite of atmospheric general circulation models. Drying over the Sahel during boreal summer is shown to be a response to warming of the South Atlantic relative to North Atlantic SST, with the ensuing anomalous interhemispheric SST contrast favoring a more southern position of the Atlantic intertropical convergence zone. Southern African drying during austral summer is shown to be a response to Indian Ocean warming, with enhanced atmospheric convection over those warm waters driving subsidence drying over Africa. The ensemble of greenhouse-gas-forced experiments, conducted as part of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, fails to simulate the pattern or amplitude of the twentieth-century African drying, indicating that the drought conditions were likely of natural origin. For the period 2000–49, the ensemble mean of the forced experiments yields a wet signal over the Sahel and a dry signal over southern Africa. These rainfall changes are physically consistent with a projected warming of the North Atlantic Ocean compared with the South Atlantic Ocean, and a further warming of the Indian Ocean. However, considerable spread exists among the individual members of the multimodel ensemble.


2007 ◽  
Vol 74 (1) ◽  
pp. 71-94 ◽  
Author(s):  
E. Sultan ◽  
H. Mercier ◽  
R.T. Pollard

2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


Sign in / Sign up

Export Citation Format

Share Document