Indian Ocean Dipole Response to Global Warming: Analysis of Ocean–Atmospheric Feedbacks in a Coupled Model*

2010 ◽  
Vol 23 (5) ◽  
pp. 1240-1253 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Gabriel A. Vecchi ◽  
Qinyu Liu ◽  
Jan Hafner

Abstract Low-frequency modulation and change under global warming of the Indian Ocean dipole (IOD) mode are investigated with a pair of multicentury integrations of a coupled ocean–atmosphere general circulation model: one under constant climate forcing and one forced by increasing greenhouse gas concentrations. In the unforced simulation, there is significant decadal and multidecadal modulation of the IOD variance. The mean thermocline depth in the eastern equatorial Indian Ocean (EEIO) is important for the slow modulation, skewness, and ENSO correlation of the IOD. With a shoaling (deepening) of the EEIO thermocline, the thermocline feedback strengthens, and this leads to an increase in IOD variance, a reduction of the negative skewness of the IOD, and a weakening of the IOD–ENSO correlation. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to easterly wind anomalies in the equatorial Indian Ocean; the oceanic response to weakened circulation is a thermocline shoaling in the EEIO. Under greenhouse forcing, the thermocline feedback intensifies, but surprisingly IOD variance does not. The zonal wind anomalies associated with IOD are found to weaken, likely due to increased static stability of the troposphere from global warming. Linear model experiments confirm this stability effect to reduce circulation response to a sea surface temperature dipole. The opposing changes in thermocline and atmospheric feedbacks result in little change in IOD variance, but the shoaling thermocline weakens IOD skewness. Little change under global warming in IOD variance in the model suggests that the apparent intensification of IOD activity during recent decades is likely part of natural, chaotic modulation of the ocean–atmosphere system or the response to nongreenhouse gas radiative changes.

2013 ◽  
Vol 26 (16) ◽  
pp. 6067-6080 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Yan Du ◽  
Lin Liu ◽  
Gang Huang ◽  
...  

Abstract The response of the Indian Ocean dipole (IOD) mode to global warming is investigated based on simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to increased greenhouse gases, an IOD-like warming pattern appears in the equatorial Indian Ocean, with reduced (enhanced) warming in the east (west), an easterly wind trend, and thermocline shoaling in the east. Despite a shoaling thermocline and strengthened thermocline feedback in the eastern equatorial Indian Ocean, the interannual variance of the IOD mode remains largely unchanged in sea surface temperature (SST) as atmospheric feedback and zonal wind variance weaken under global warming. The negative skewness in eastern Indian Ocean SST is reduced as a result of the shoaling thermocline. The change in interannual IOD variance exhibits some variability among models, and this intermodel variability is correlated with the change in thermocline feedback. The results herein illustrate that mean state changes modulate interannual modes, and suggest that recent changes in the IOD mode are likely due to natural variations.


2007 ◽  
Vol 20 (13) ◽  
pp. 3018-3035 ◽  
Author(s):  
Suryachandra A. Rao ◽  
Sebastien Masson ◽  
Jing-Jia Luo ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

Abstract Using 200 yr of coupled general circulation model (CGCM) results, causes for the termination of Indian Ocean dipole (IOD) events are investigated. The CGCM used here is the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) model, which consists of a version of the European Community–Hamburg (ECHAM4.6) atmospheric model and a version of the Ocean Parallelise (OPA8.2) ocean general circulation model. This model reproduces reasonably well the present-day climatology and interannual signals of the Indian and Pacific Oceans. The main characteristics of the intraseasonal disturbances (ISDs)/oscillations are also fairly well captured by this model. However, the eastward propagation of ISDs in the model is relatively fast in the Indian Ocean and stationary in the Pacific compared to observations. A sudden reversal of equatorial zonal winds is observed, as a result of significant intraseasonal disturbances in the equatorial Indian Ocean in November–December of IOD events, which evolve independently of ENSO. A majority of these IOD events (15 out of 18) are terminated mainly because of the 20–40-day ISD activity in the equatorial zonal winds. Ocean heat budget analysis in the upper 50 m clearly shows that the initial warming after the peak of the IOD phenomenon is triggered by increased solar radiation owing to clear-sky conditions in the eastern Indian Ocean. Subsequently, the equatorial jets excited by the ISD deepen the thermocline in the southeastern equatorial Indian Ocean. This deepening of the thermocline inhibits the vertical entrainment of cool waters and therefore the IOD is terminated. IOD events that co-occur with ENSO are terminated owing to anomalous incoming solar radiation as a result of prevailing cloud-free skies. Further warming occurs seasonally through the vertical convergence of heat due to a monsoonal wind reversal along Sumatra–Java. On occasion, strong ISD activities in July–August terminated short-lived IOD events by triggering downwelling intraseasonal equatorial Kelvin waves.


Author(s):  
Saji N. Hameed

Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.


2020 ◽  
Vol 33 (24) ◽  
pp. 10437-10453
Author(s):  
Shang-Min Long ◽  
Gen Li ◽  
Kaiming Hu ◽  
Jun Ying

AbstractPrevious studies reveal that the last generation of coupled general circulation models (CGCMs) commonly suffer from the so-called Indian Ocean dipole (IOD)-like biases, lowering the models’ ability in climate prediction and projection. The present study shows that such IOD-like biases are reduced insignificantly or even worsen in CGCMs from phase 5 to phase 6 of the Coupled Model Intercomparison Project (CMIP). The origins of the IOD-like biases in CGCMs are further investigated by comparing model outputs from CMIP and the Atmospheric Model Intercomparison Project (AMIP). The CGCMs’ errors are divided into the biases from the AMIP simulation (AMIP biases) and ocean–atmosphere coupling (coupling biases). For the multimodel ensemble mean, the AMIP (coupling) biases account for about two-thirds (one-third) of the IOD-like CMIP biases. In AMIP simulations, the South Asian summer monsoon (SASM) is overly strong; therefore, it could advect overly large easterly momentum from the south Indian Ocean (IO) to the equator. The resultant equatorial easterly wind bias would initiate the convection–circulation feedback and develop large IOD-like AMIP biases. In contrast, the coupling biases weaken the SASM and hence generate warm SST error over the western IO during boreal summer. Such SST error persists to boreal autumn and triggers the Bjerknes feedback, developing the IOD-like coupling biases. Furthermore, the intermodel spread in the IOD-like CMIP biases is largely explained by the intermodel differences in the coupling biases rather than the AMIP biases. The results imply that substantial efforts should be respectively made on reducing the atmospheric models’ intrinsic monsoon biases as well as advancing the simulations of ocean–atmosphere coupling processes.


2007 ◽  
Vol 20 (13) ◽  
pp. 3036-3055 ◽  
Author(s):  
Debasis Sengupta ◽  
Retish Senan ◽  
B. N. Goswami ◽  
Jérôme Vialard

Abstract New satellite and in situ observations show large intraseasonal (10–60 day) variability of surface winds and upper-ocean current in the equatorial Indian Ocean, particularly in the east. An ocean model forced by the Quick Scatterometer (QuikSCAT) wind stress is used to study the dynamics of the intraseasonal zonal current. The model has realistic upper-ocean currents and thermocline depth variabilities on intraseasonal to interannual scales. The quality of the simulation is directly attributed to the accuracy of the wind forcing. At the equator, moderate westerly winds are punctuated by strong 10–40-day westerly wind bursts. The wind bursts force swift, intraseasonal (20–50 day) eastward equatorial jets in spring, summer, and fall. The zonal momentum balance is between local acceleration, stress, and pressure, while nonlinearity deepens and strengthens the eastward current. The westward pressure force associated with the thermocline deepening toward the east rapidly arrests eastward jets and, subsequently, generates (weak) westward flow. Thus, in accord with direct observations in the east, the spring jet is a single intraseasonal event, there are intraseasonal jets in summer, and the fall jet is long lived but strongly modulated on an intraseasonal scale. The zonal pressure force is almost always westward in the upper 120 m, and changes sign twice a year in the 120–200-m layer. Transient eastward equatorial undercurrents in early spring and late summer are associated with semiannual Rossby waves generated at the eastern boundary following thermocline deepening by the spring and fall jets. An easterly wind stress is not necessary to generate the undercurrents. Experiments with a single westerly wind burst forcing show that apart from the intraseasonal response, the zonal pressure force and current in the east have an intrinsic 90-day time scale that arises purely from equatorial adjustment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2017 ◽  
Vol 14 (6) ◽  
pp. 1541-1559 ◽  
Author(s):  
Parvathi Vallivattathillam ◽  
Suresh Iyyappan ◽  
Matthieu Lengaigne ◽  
Christian Ethé ◽  
Jérôme Vialard ◽  
...  

Abstract. The seasonal upwelling along the west coast of India (WCI) brings nutrient-rich, oxygen-poor subsurface waters to the continental shelf, favoring very low oxygen concentrations in the surface waters during late boreal summer and fall. This yearly-recurring coastal hypoxia is more severe during some years, leading to coastal anoxia that has strong impacts on the living resources. In the present study, we analyze a 1/4° resolution coupled physical–biogeochemical regional oceanic simulation over the 1960–2012 period to investigate the physical processes influencing the oxycline interannual variability off the WCI, that being a proxy for the variability on the shelf in our model. Our analysis indicates a tight relationship between the oxycline and thermocline variations in this region on both seasonal and interannual timescales, thereby revealing a strong physical control of the oxycline variability. As in observations, our model exhibits a shallow oxycline and thermocline during fall that combines with interannual variations to create a window of opportunity for coastal anoxic events. We further demonstrate that the boreal fall oxycline fluctuations off the WCI are strongly related to the Indian Ocean Dipole (IOD), with an asymmetric influence of its positive and negative phases. Positive IODs are associated with easterly wind anomalies near the southern tip of India. These winds force downwelling coastal Kelvin waves that propagate along the WCI and deepen the thermocline and oxycline there, thus preventing the occurrence of coastal anoxia. On the other hand, negative IODs are associated with WCI thermocline and oxycline anomalies of opposite sign but of smaller amplitude, so that the negative or neutral IOD phases are necessary but not the sufficient condition for coastal anoxia. As the IODs generally start developing in summer, these findings suggest some predictability to the occurrence of coastal anoxia off the WCI a couple of months ahead.


Sign in / Sign up

Export Citation Format

Share Document