scholarly journals Global trends in downward surface solar radiation from spatial interpolated ground observations during 1961-2019

2021 ◽  
pp. 1-56
Author(s):  
Menghan Yuan ◽  
Thomas Leirvik ◽  
Martin Wild

AbstractDownward surface solar radiation (SSR) is a crucial component of the Global Energy Balance, affecting temperature and the hydrological cycle profoundly, and it provides crucial information about climate change. Many studies have examined SSR trends, however they are often concentrated on specific regions due to limited spatial coverage of ground based observation stations. To overcome this spatial limitation, this study performs a spatial interpolation based on a machine learning method, Random Forest, to interpolate monthly SSR anomalies using a number of climatic variables (various temperature indices, cloud coverage, etc.), time point indicators (years and months of SSR observations), and geographical characteristics of locations (latitudes, longitudes, etc). The predictors that provide the largest explanatory power for interannual variability are diurnal temperature range and cloud coverage. The output of the spatial interpolation is a 0:5° ×0:5° monthly gridded dataset of SSR anomalies with complete land coverage over the period 1961-2019, which is used afterwards in a comprehensive trend analysis for i) each continent separately, and ii) the entire globe.The continental level analysis reveals the major contributors to the global dimming and brightening. In particular, the global dimming before the 1980s is primarily dominated by negative trends in Asia and North America, while Europe and Oceania have been the two largest contributors to the brightening after 1982 and up until 2019.

2016 ◽  
Author(s):  
Katsumasa Tanaka ◽  
Atsumu Ohmura ◽  
Doris Folini ◽  
Martin Wild ◽  
Nozomu Ohkawara

Abstract. Observations worldwide indicate secular trends of all-sky surface solar radiation on decadal time scale, termed global dimming and brightening. Accordingly, the observed surface radiation in Japan generally shows a strong decline till the end of the 1980s and then a recovery toward around 2000. Because a substantial number of measurement stations are located within or proximate to populated areas, one may speculate that the observed trends are strongly influenced by local air pollution and are thus not of large-scale significance. This hypothesis poses a serious question as to what regional extent the global dimming and brightening are significant: Are the global dimming and brightening truly global phenomena, or regional or even only local? Our study focused on 14 meteorological observatories that measured all-sky surface solar radiation, zenith transmittance, and maximum transmittance. On the basis of municipality population time series, historical land use maps, recent satellite images, and actual site visits, we concluded that eight stations had been significantly influenced by urbanization, with the remaining six stations being left pristine. Between the urban and rural areas, no marked differences were identified in the temporal trends of the aforementioned meteorological parameters. Our finding suggests that global dimming and brightening in Japan occurred on a large scale, independently of urbanization.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 42 ◽  
Author(s):  
Xiaomin Peng ◽  
Jiangfeng She ◽  
Shuhua Zhang ◽  
Junzhong Tan ◽  
Yang Li

Solar radiation incident at the Earth’s surface is an essential driver of the energy exchange between the atmosphere and the surface and is also an important input variable in the research on the surface eco-hydrological process. The reanalysis solar radiation dataset is characterized by a long time series and wide spatial coverage and is used in the research of large-scale eco-hydrological processes. Due to certain errors in their production process of the reanalysis of solar radiation products, reanalysis products should be evaluated before application. In this study, three global solar-radiation reanalysis products (ERA-Interim; JRA-55; and NCEP-DOE) in different temporal scales and climate zones were evaluated using surface solar-radiation observations from the National Meteorological Information Center of the China Meteorological Administration (CMA, Beijing, China) and the Global Energy Balance Archive (GEBA, Zürich, Switzerland) from 2000 to 2009. All reanalysis products (ERA-Interim; JRA-55; and NCEP-DOE) overestimated with an annual bias of 14.86 W/m2, 22.61 W/m2, and 31.85 W/m2; monthly bias of 15.17 W/m2, 21.29 W/m2, and 36.91 W/m2; and seasonal bias of 15.08 W/m2, 21.21 W/m2, and 36.69 W/m2, respectively. In different Köppen climate zones, the annual solar radiation of ERA-Interim performed best in cold regions with a bias of 10.30 W/m2 and absolute relative error (ARE) of 8.98%. However, JRA-55 and NCEP-DOE showed the best performance in tropical regions with a bias of 20.08 W/m2 and −0.12 W/m2, and ARE of 11.00% and 9.68%, respectively. Overall, through the evaluations across different temporal and spatial scales, the rank of the three reanalysis products in order was the ERA-Interim, JRA-55, and NCEP-DOE. In addition, based on the evaluation, we analyzed the relationship between the error (ARE) of the reanalysis products and cloud cover, aerosol, and water vapor, which significantly influences solar radiation and we found that cloud was the main cause for errors in the three solar radiation reanalysis products. The above can provide a reference for the application and downscaling of the three solar radiation reanalysis products.


2014 ◽  
Vol 32 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Y. W. Wang ◽  
Y. H. Yang

Abstract. There is growing evidence that, corresponding to global dimming and brightening, surface solar radiation and sunshine hours over China have undergone decadal fluctuations during the 1960s–2000s. The results of a number of these analyses are, however, very different. In this study, we synthesize reliable results and conclusively address recent advances and insufficiencies in studies on dimming and brightening in China. A temporally and spatially prevalent dimming trend is noted in surface solar radiation, direct solar radiation and sunshine hours since the 1960s. Meanwhile, the changing trend in diffuse solar radiation is less pronounced. Increasing anthropogenic aerosol loading is regarded as the most plausible explanation for China's dimming. The brightening trend since 1990, which mainly occurs in southeastern China and in the spring season, is weak and insignificant. The reverse in the solar radiation trend is associated with climate change by cloud suppression and slowdown in anthropogenic emissions. The future solar radiation trend in China could largely depend on the development of air quality control. Other potential driving factors such as wind speed, water vapor and surface albedo are also non-negligible in specific regions of China. Hydrological implications of dimming and brightening in China lack systematic investigation. However, the fact that solar radiation and pan evaporation trends in China track a similar curve in 1990 further suggests that the pan evaporation paradox could be partly resolved by changes in solar radiation.


2019 ◽  
Vol 11 (10) ◽  
pp. 1198 ◽  
Author(s):  
Dimitris Kaskaoutis ◽  
Jesús Polo

Surface-solar radiation is of vital importance for life on Earth, radiation–energy balance, photosynthesis, and photochemical reactions, meteorological and climatic conditions, and the water cycle. Solar radiation measurements are growing in quality and density but they are still scarce enough to properly explain the spatial and temporal variability. As a consequence, great efforts are still being devoted to improving modeling and retrievals of solar radiation data. This Special Issue reviews techniques for solar radiation modeling and remote sensing using satellite and advanced statistical techniques for solar radiation. Satellite remote sensing of solar radiation provides better spatial coverage, and various methods have been presented on this issue covering several aspects: updated models for solar radiation modeling under clear sky conditions, new approaches for retrieving solar radiation from satellite imagery and validation against ground data, forecasting solar radiation, and modeling photosynthetically active radiation.


2015 ◽  
Vol 96 (3) ◽  
pp. 405-418 ◽  
Author(s):  
Roberto Rondanelli ◽  
Alejandra Molina ◽  
Mark Falvey

Abstract Solar radiation reaching Earth’s surface is one of the major drivers of climate dynamics. By setting the surface energy balance, downwelling solar radiation indirectly heats the atmosphere and controls the hydrological cycle. Besides its critical importance as a physical mechanism for driving climate and weather, solar radiation has attracted interest as a potentially major source of energy for human activities. For a given latitude, solar radiation at Earth’s surface depends mostly on the composition along the atmospheric path. Since the early twentieth century, major astronomical observatories have led the search for the best places for observation from Earth, which presents a similar problem to the one of finding the maximum of solar radiation at the surface. In particular, Mount Montezuma in the Atacama Desert, Chile, was identified by the pioneers of solar observation as an ideal place to conduct the search for variations of the solar constant estimated from Earth’s surface. By using available global datasets, a semiempirical model for the surface solar radiation over northern Chile, and a network of surface stations, we confirm Atacama as the place where the highest mean surface solar radiation is found. The most likely location of the maximum downwelling solar radiation over the surface of the planet is on the pre-Andean Domeyko Cordillera (3,500–5,000 m above mean sea level, between 24° and 25°S, along 69°W) with a value of about 310 ± 15 W m–2. We discuss the main regional and local features of this region that conspire to produce the solar maximum.


2016 ◽  
Vol 16 (21) ◽  
pp. 13969-14001 ◽  
Author(s):  
Katsumasa Tanaka ◽  
Atsumu Ohmura ◽  
Doris Folini ◽  
Martin Wild ◽  
Nozomu Ohkawara

Abstract. Worldwide observations indicate secular trends of all-sky surface solar radiation on a decadal time scale, termed global dimming and brightening. Accordingly, the observed surface radiation in Japan generally shows a strong decline until the end of the 1980s and then a recovery until around 2000. Because a substantial number of measurement stations are located within or close to populated areas, one may speculate that the observed trends are strongly influenced by local air pollution and are thus not of large-scale significance. This hypothesis poses a serious question as to what regional extent the global dimming and brightening are significant: are the global dimming and brightening truly global phenomena, or regional, or even only local? Our study focused on 14 meteorological observatories that measured all-sky surface solar radiation, zenith transmittance, and maximum transmittance. On the basis of municipality population time series, historical land use maps, recent satellite images, and actual site visits, we concluded that eight stations have been significantly influenced by urbanization, with the remaining six stations being left pristine. Between the urban and rural areas, no marked differences were identified in the temporal trends of the aforementioned meteorological parameters. Our findings suggest that global dimming and brightening in Japan occurred on a large scale, independently of urbanization.


Sign in / Sign up

Export Citation Format

Share Document