North Atlantic footprint of summer Greenland ice sheet melting on interannual to interdecadal timescales: A Greenland blocking perspective
Abstract Recent rapid melting of summer Greenland ice sheet (GrIS) and its impact on the Earth’s climate has attracted much attention. In this paper, we establish a connection between the melting of GrIS and the variability of summer sea surface temperature (SST) anomalies over North Atlantic on interannual to interdecadal timescales through changes in sub-seasonal Greenland blocking (GB). It is found that the latitude and width of GB are important for the spatial patterns of the GrIS melting. The melting of GrIS on interdecadal timescales is most prominent for the positive Atlantic Multidecadal Oscillation phase (AMO+) because the high latitude GB and its large width, long lifetime and slow decay are favored. However, the North Atlantic mid-high latitude warm-cold-warm (cold-warm-cold) tripole or NAT+ (NAT−) pattern on interannual timescales tends to strengthen (weaken) the role of AMO+ in the GrIS melting especially on the northern or northeastern periphery of Greenland by promoting (inhibiting) high-latitude GB and increasing (decreasing) its width. It is further revealed that AMO+ (NAT+) favors the persistence and width of GB mainly through producing weak summer zonal winds and small summer meridional potential vorticity gradient (PVy) in the North Atlantic mid-high latitudes 55°-70°N (55°-65°N) compared to the role of AMO− (NAT−). The event frequency and zonal width of GB events and their poleward shift are favored by the combination of NAT+ with AMO+. In contrast, the combination of NAT− and AMO+ tends to suppress reduced summer zonal winds and PVy, thus inhibiting the event frequency of GB events and their poleward shift and zonal width.