scholarly journals Observed Trends in Indices of Daily Temperature Extremes in South America 1960–2000

2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.

2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


Geografie ◽  
2008 ◽  
Vol 113 (4) ◽  
pp. 372-382
Author(s):  
Zbigniew W. Kundzewicz ◽  
Damian Józefczyk

This paper examines temperature-related climate extremes in the unique long-term gapfree record at the Secular Meteorological Station in Potsdam. Increasing tendencies in daily minimum temperature in winter and daily maximum temperature in summer, as well as monthly means of daily minimum temperatures in winter months and of daily maximum temperatures in summer months are illustrated. Also the numbers of hot days and of summer days (with maximum daily temperature exceeding 30 °C and 25 °C, respectively) have been increasing. In agreement with warming of winter minimum temperatures, the numbers of frost days (with minimum daily temperature below 0 °C) and of ice days (with maximum daily temperature below 0 °C) have been decreasing. However, low correlation coefficient and huge scatter illustrate strong natural variability, so that the occurrence of extremes departs from the general underlying tendency.


2021 ◽  
Author(s):  
Farhan Aziz ◽  
Nadeem Tariq ◽  
Akif Rahim ◽  
Ambreen Mahmood

<p>In recent years, extreme events and their severe damage have become more common around the world. It is widely known that atmospheric greenhouse gases have contributed to global warming. <br>A set of appropriate indicators describing the extremes of climate change can be used to study the extent of climate change. This study reveals the trends of temperature extreme indices on the spatial scale in the western part of Northwest Himalayas. The study is conducted at 13 climate stations lies at a different altitude of the study area.The Daily maximum and minimum temperature data during 2000--2018 of stations obtained from the Pakistan Meteorological Department (PMD) and Water and Power Development Authority (WAPDA). The 12 extreme temperature indices (FD, SU, TXx , TXn., TNx, TNn, TN10p , TN90p, TX10p , TX90p, CSDI, WSDI) recommended by ETCCDI (Expert Team on Climate Change Detection and Indices) are used to study the variabilities in temperature extremes. These indices are characterized based on amplitude, persistence, and frequency. The analysis is performed by using R package of extremes “RClimDEX”. The analysis shows the frequency of summer days (Su) and warm spells (WSDI) have increasing trends in the Southwest region, whereas the frequency of cold spells and frost days have decreasing trends observed in the Northern region of the study areas. The maximum and minimum values of daily maximum temperature (TXX, TXN) increase in the foothill area of the region and decreasing trends in the high elevation region. The day and night get cool in the Northwest region, whereas the days and nights are showing warmer trends in low elevation regions of the study area. Overall, the study concludes that the Northwestern parts have cool trends while South West and South eastern parts have warm trends during the early 21st century.</p><p><strong>Key words:</strong>  Temperature Extremes, Northwest Himalayas, Trends, R-Climdex, Climate Change</p>


2021 ◽  
Author(s):  
Raju Kalita ◽  
Dipangkar Kalita ◽  
Atul Saxena

Abstract We have used Mann-Kendall trend test and Sen’s slope estimator method to find out significant changes in extreme climate indices for daily temperature as well as precipitation over the period 1979 to 2020 in Cherrapunji. In the present study, a total of 24 precipitation and temperature based extreme climate indices were calculated using RClimDex v 1.9-3. Among 24 indices, 7 were derived from number of days above nn mm rainfall (Rnn) according to Indian Meteorological Department (IMD) convention and the rest were in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). It was observed that, among all the indices, consecutive dry days (CDD), summer days (SU25) and very light rainfall (VLR) days increased significantly with 0.54, 1.58 and 0.14 days/year respectively, while only consecutive wet days (CWD) decreased significantly with 0.36 days/year. A slight negative trend was also observed in case of tropical nights (TR20) and among the other precipitation indices as well. Again, the indices associated with daily maximum temperature increased significantly with annual change of 0.06 to 0.07 ⁰C/year. And for indices associated with daily minimum temperature, almost no change or a slight negative change was observed, except a significant positive trend in February and significant negative trend in November for TNN only. The analysis reveals that some of the extreme climate indices which explains the climatic conditions of Cherrapunji has changed a lot over the period of 42 years and if this trend continues then Cherrapunji will be under threat when it comes to climate change.


2020 ◽  
Author(s):  
Sachidanand Kumar ◽  
Kironmala Chanda ◽  
Srinivas Pasupuleti

<p><strong>Abstract</strong></p><p>This article reports the research findings in a recent study (Kumar et al., 2020) that utilizes eight indices of climate change recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) for analyzing spatio-temporal trends in extreme precipitation and temperature at the daily scale across India. Observed gridded precipitation (1971-2017) and temperature (1971-2013) datasets from India Meteorological Department (IMD) are used along with reanalysis products from Climate Prediction Centre (CPC). The trends are estimated using non-parametric Mann-Kendall (MK) test and regression analysis. The trends in ‘wet days’ (daily precipitation greater than 95<sup>th</sup> percentile) and ‘dry days’ (daily precipitation lower than 5<sup>th</sup> percentile) are examined considering the entire year (annual) as well as monsoon months only (seasonal). At the annual scale, about 13% of the grid locations indicated significant trend (either increasing or decreasing at 5% significance level) in the index R95p (rainfall contribution from extreme ‘wet days’) while 20% of the locations indicated significant trend in R5p (rainfall contribution from extreme ‘dry days’). For the seasonal analysis (June to September), the corresponding figures are nil and 21% respectively. The spatio-temporal trends in ‘warm days’ (daily maximum temperature greater than 95<sup>th</sup> percentile), ‘warm nights’ (daily minimum temperature greater than 95<sup>th</sup> percentile), ‘cold days’ (daily maximum temperature lower than 5<sup>th</sup> percentile) and ‘cold nights’ (daily minimum temperature lower than 5<sup>th</sup> percentile) are also investigated for the aforementioned period. The number of ‘warm days’ per year increased significantly at 14% of the locations, while the number of ‘cold days’, ‘warm nights’ and ‘cold nights’ per year decreased significantly at several (42%, 34% and 39%) of the locations. The extreme temperature indices are also investigated for the future using CanESM2 projected data for RCP8.5 after suitable bias correction. Most of the locations (49% to 84%) indicate significant increasing (decreasing) trend in ‘warm days’ (‘cold days’) in the three epochs, 2006-2040, 2041-2070 and 2071-2100. Moreover, most locations (60% to 81%) show an increasing trend in ‘warm nights’ and a decreasing trend in ‘cold nights’ in all the epochs. A similar investigation for the historical and future periods using CPC data as the reference indicates that the trends, on comparison with IMD observations, seem to be in agreement for temperature extremes but spatially more extensive in case of CPC precipitation extremes.</p><p><strong>Keywords: extreme precipitation and temperature, climate change indices, spatio-temporal variation, India</strong></p><p><strong>References:</strong></p><p>Kumar S., Chanda, K., Srinivas P., (2020), Spatiotemporal analysis of extreme indices derived from daily precipitation and temperature for climate change detection over India, Theoretical and Applied Climatology, Springer, In press, DOI: 10.1007/s00704-020-03088-5.</p>


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 489
Author(s):  
Jinxiu Liu ◽  
Weihao Shen ◽  
Yaqian He

India has experienced extensive land cover and land use change (LCLUC). However, there is still limited empirical research regarding the impact of LCLUC on climate extremes in India. Here, we applied statistical methods to assess how cropland expansion has influenced temperature extremes in India from 1982 to 2015 using a new land cover and land use dataset and ECMWF Reanalysis V5 (ERA5) climate data. Our results show that during the last 34 years, croplands in western India increased by ~33.7 percentage points. This cropland expansion shows a significantly negative impact on the maxima of daily maximum temperature (TXx), while its impacts on the maxima of daily minimum temperature and the minima of daily maximum and minimum temperature are limited. It is estimated that if cropland expansion had not taken place in western India over the 1982 to 2015 period, TXx would likely have increased by 0.74 (±0.64) °C. The negative impact of croplands on reducing the TXx extreme is likely due to evaporative cooling from intensified evapotranspiration associated with croplands, resulting in increased latent heat flux and decreased sensible heat flux. This study underscores the important influences of cropland expansion on temperature extremes and can be applicable to other geographic regions experiencing LCLUC.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


Author(s):  
Kanawut Chattrairat ◽  
Waranyu Wongseree ◽  
Adisorn Leelasantitham

The climate change which is essential for daily life and especially agriculture has been forecasted by global climate models (GCMs) in the past few years. Statistical downscaling method (SD) has been used to improve the GCMs and enables the projection of local climate. Many pieces of research have studied climate change in case of individually seasonal temperature and precipitation for simulation; however, regional difference has not been included in the calculation. In this research, four fundamental SDs, linear regression (LR), Gaussian process (GP), support vector machine (SVM) and deep learning (DL), are studied for daily maximum temperature (TMAX), daily minimum temperature (TMIN), and precipitation (PRCP) based on the statistical relationship between the larger-scale climate predictors and predictands in Thailand. Additionally, the data sets of climate variables from over 45 weather stations overall in Thailand are used to calculate in this calculation. The statistical analysis of two performance criteria (correlation and root mean square error (RMSE)) shows that the DL provides the best performance for simulation. The TMAX and TMIN were calculated and gave a similar trend for all models. PRCP results found that in the North and South are adequate and poor performance due to high and low precipitation, respectively. We illustrate that DL is one of the suitable models for the climate change problem.


2017 ◽  
Vol 56 (9) ◽  
pp. 2393-2409 ◽  
Author(s):  
Rick Lader ◽  
John E. Walsh ◽  
Uma S. Bhatt ◽  
Peter A. Bieniek

AbstractClimate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.


2013 ◽  
Vol 52 (10) ◽  
pp. 2363-2372 ◽  
Author(s):  
John R. Christy

AbstractThe International Surface Temperature Initiative is a worldwide effort to locate weather observations, digitize them for public access, and attach provenance to them. As part of that effort, this study sought documents of temperature observations for the nation of Uganda. Although scattered reports were found for the 1890s, consistent record keeping appears to have begun in 1900. Data were keyed in from images of several types of old forms as well as accessed electronically from several sources to extend the time series of 32 stations with at least 4 yr of data back as far as data were available. Important gaps still remain; 1979–93 has virtually no observations from any station. Because many stations were represented by more than one data source, a scheme is described to extract the “best guess” values for each station of monthly averages of the daily maximum, minimum, and mean temperature. A preliminary examination of the national time series indicates that, since the early twentieth century, it appears that Uganda experienced essentially no change in monthly-average daily maximum temperature but did experience a considerable rise in monthly-average daily minimum temperature, concentrated in the last three decades. Because there are many gaps in the data, it is hoped that readers with information on extant data that were not discovered for this study will contact the author or the project so that the data may be archived.


Sign in / Sign up

Export Citation Format

Share Document