scholarly journals Projections of Twenty-First-Century Climate Extremes for Alaska via Dynamical Downscaling and Quantile Mapping

2017 ◽  
Vol 56 (9) ◽  
pp. 2393-2409 ◽  
Author(s):  
Rick Lader ◽  
John E. Walsh ◽  
Uma S. Bhatt ◽  
Peter A. Bieniek

AbstractClimate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.

2021 ◽  
Vol 5 (3) ◽  
pp. 481-497
Author(s):  
Mansour Almazroui ◽  
Fahad Saeed ◽  
Sajjad Saeed ◽  
Muhammad Ismail ◽  
Muhammad Azhar Ehsan ◽  
...  

AbstractThis paper presents projected changes in extreme temperature and precipitation events by using Coupled Model Intercomparison Project phase 6 (CMIP6) data for mid-century (2036–2065) and end-century (2070–2099) periods with respect to the reference period (1985–2014). Four indices namely, Annual maximum of maximum temperature (TXx), Extreme heat wave days frequency (HWFI), Annual maximum consecutive 5-day precipitation (RX5day), and Consecutive Dry Days (CDD) were investigated under four socioeconomic scenarios (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5) over the entire globe and its 26 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) regions. The projections show an increase in intensity and frequency of hot temperature and precipitation extremes over land. The intensity of the hottest days (as measured by TXx) is projected to increase more in extratropical regions than in the tropics, while the frequency of extremely hot days (as measured by HWFI) is projected to increase more in the tropics. Drought frequency (as measured by CDD) is projected to increase more over Brazil, the Mediterranean, South Africa, and Australia. Meanwhile, the Asian monsoon regions (i.e., South Asia, East Asia, and Southeast Asia) become more prone to extreme flash flooding events later in the twenty-first century as shown by the higher RX5day index projections. The projected changes in extremes reveal large spatial variability within each SREX region. The spatial variability of the studied extreme events increases with increasing greenhouse gas concentration (GHG) and is higher at the end of the twenty-first century. The projected change in the extremes and the pattern of their spatial variability is minimum under the low-emission scenario SSP1-2.6. Our results indicate that an increased concentration of GHG leads to substantial increases in the extremes and their intensities. Hence, limiting CO2 emissions could substantially limit the risks associated with increases in extreme events in the twenty-first century.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


2020 ◽  
Author(s):  
Luc Yannick Andréas Randriamarolaza ◽  
Enric Aguilar ◽  
Oleg Skrynyk

<p>Madagascar is an Island in Western Indian Ocean Region. It is mainly exposed to the easterly trade winds and has a rugged topography, which promote different local climates and biodiversity. Climate change inflicts a challenge on Madagascar socio-economic activities. However, Madagascar has low density station and sparse networks on observational weather stations to detect changes in climate. On average, one station covers more than 20 000 km<sup>2</sup> and closer neighbor stations are less correlated. Previous studies have demonstrated the changes on Madagascar climate, but this paper contributes and enhances the approach to assess the quality control and homogeneity of Madagascar daily climate data before developing climate indices over 1950 – 2018 on 28 synoptic stations. Daily climate data of minimum and maximum temperature and precipitation are exploited.</p><p>Firstly, the quality of daily climate data is controlled by INQC developed and maintained by Center for Climate Change (C3) of Rovira i Virgili University, Spain. It ascertains and improves error detections by using six flag categories. Most errors detected are due to digitalization and measurement.</p><p>Secondly, daily quality controlled data are homogenized by using CLIMATOL. It uses relative homogenization methods, chooses candidate reference series automatically and infills the missing data in the original data. It has ability to manage low density stations and low inter-station correlations and is tolerable for missing data. Monthly break points are detected by CLIMATOL and used to split daily climate data to be homogenized.</p><p>Finally, climate indices are calculated by using CLIMIND package which is developed by INDECIS<sup>*</sup> project. Compared to previous works done, data period is updated to 10 years before and after and 15 new climate indices mostly related to extremes are computed. On temperature, significant increasing and decreasing decade trends of day-to-day and extreme temperature ranges are important in western and eastern areas respectively. On average decade trends of temperature extremes, significant increasing of daily minimum temperature is greater than daily maximum temperature. Many stations indicate significant decreasing in very cold nights than significant increasing in very warm days. Their trends are almost 1 day per decade over 1950 – 2018. Warming is mainly felt during nighttime and daytime in Oriental and Occidental parts respectively. In contrast, central uplands are warming all the time but tropical nights do not appear yet. On rainfall, no major significant findings are found but intense precipitation might be possible at central uplands due to shortening of longest wet period and occurrence of heavy precipitation. However, no influence detected on total precipitation which is still decreasing over 1950 - 2018. Future works focus on merging of relative homogenization methodologies to ameliorate the results.</p><p>-------------------</p><p>*INDECIS is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).</p>


2020 ◽  
Vol 13 (12) ◽  
Author(s):  
Mansour Almazroui

Abstract The present study analyzes the Survivability for a Fit Human Threshold (SFHT) maximum temperature during the summer (June–August) over the six Middle Eastern countries known as the Gulf Cooperation Council (GCC) in the twenty-first century. An ensemble of three dynamically downscaled global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the Representative Concentration Pathways (RCPs) RCP4.5 and RCP8.5 emission scenarios is used to analyze the future climate (2006–2099) over the region. The ground-truth air temperature for ten major cities across the GCC countries is utilized for model evaluation and to estimate the model-simulated temperature biases. Both positive and negative biases found during the present climate (1976–2005) are used to adjust the future temperature changes. These adjustments show that the summer maximum temperature is likely to increase continuously for most cities in the GCC countries at the rate of about 0.2 °C (0.6 °C) per decade under RCP4.5 (RCP8.5) for the future period (2020–2099), which is significant at the 99% confidence level. For RCP8.5, the adjusted summer maximum temperature may exceed the SFHT limit of 42 °C in five capital cities of the GCC states and four major cities of Saudi Arabia. The projections based on adjusted values indicate that the average summer maximum temperature should not exceed 52 °C in any city investigated by the end of the twenty-first century. The daily maximum temperature is projected to exceed 55 °C in some cities in the GCC region by the end of the twenty-first century under a business-as-usual scenario that seems to be unrealistic if the biases are not taken into account. It is highly recommended that the GCC states should coordinate their efforts to respond appropriately to these projections using large ensembles of multimodel simulations while allowing for the associated uncertainty.


2015 ◽  
Vol 16 (6) ◽  
pp. 2421-2442 ◽  
Author(s):  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Edwin P. Maurer ◽  
John T. Abatzoglou ◽  
Katherine C. Hegewisch

Abstract Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.


2012 ◽  
Vol 69 (8) ◽  
pp. 2608-2618 ◽  
Author(s):  
Daniel M. Mitchell ◽  
Scott M. Osprey ◽  
Lesley J. Gray ◽  
Neal Butchart ◽  
Steven C. Hardiman ◽  
...  

Abstract With extreme variability of the Arctic polar vortex being a key link for stratosphere–troposphere influences, its evolution into the twenty-first century is important for projections of changing surface climate in response to greenhouse gases. Variability of the stratospheric vortex is examined using a state-of-the-art climate model and a suite of specifically developed vortex diagnostics. The model has a fully coupled ocean and a fully resolved stratosphere. Analysis of the standard stratospheric zonal mean wind diagnostic shows no significant increase over the twenty-first century in the number of major sudden stratospheric warmings (SSWs) from its historical value of 0.7 events per decade, although the monthly distribution of SSWs does vary, with events becoming more evenly dispersed throughout the winter. However, further analyses using geometric-based vortex diagnostics show that the vortex mean state becomes weaker, and the vortex centroid is climatologically more equatorward by up to 2.5°, especially during early winter. The results using these diagnostics not only characterize the vortex structure and evolution but also emphasize the need for vortex-centric diagnostics over zonally averaged measures. Finally, vortex variability is subdivided into wave-1 (displaced) and -2 (split) components, and it is implied that vortex displacement events increase in frequency under climate change, whereas little change is observed in splitting events.


2012 ◽  
Vol 25 (8) ◽  
pp. 2696-2710 ◽  
Author(s):  
Stephen J. Vavrus ◽  
Marika M. Holland ◽  
Alexandra Jahn ◽  
David A. Bailey ◽  
Benjamin A. Blazey

Abstract The authors summarize the twenty-first-century Arctic climate simulated by NCAR’s Community Climate System Model, version 4 (CCSM4). Under a strong radiative forcing scenario, the model simulates a much warmer, wetter, cloudier, and stormier Arctic climate with considerably less sea ice and a fresher Arctic Ocean. The high correlation among the variables composing these changes—temperature, precipitation, cloudiness, sea level pressure (SLP), and ice concentration—suggests that their close coupling collectively represents a fingerprint of Arctic climate change. Although the projected changes in CCSM4 are generally consistent with those in other GCMs, several noteworthy features are identified. Despite more global warming in CCSM4, Arctic changes are generally less than under comparable greenhouse forcing in CCSM3, as represented by Arctic amplification (16% weaker) and the date of a seasonally ice-free Arctic Ocean (20 years later). Autumn is the season of the most pronounced Arctic climate change among all the primary variables. The changes are very similar across the five ensemble members, although SLP displays the largest internal variability. The SLP response exhibits a significant trend toward stronger extreme Arctic cyclones, implying greater wave activity that would promote coastal erosion. Based on a commonly used definition of the Arctic (the area encompassing the 10°C July air temperature isotherm), the region shrinks by about 40% during the twenty-first century, in conjunction with a nearly 10-K warming trend poleward of 70°N. Despite this pronounced long-term warming, CCSM4 simulates a hiatus in the secular Arctic climate trends during a decade-long stretch in the 2040s and to a lesser extent in the 2090s. These pauses occur despite averaging over five ensemble members and are remarkable because they happen under the most extreme greenhouse-forcing scenario and in the most climatically sensitive region of the world.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Niloofar Rasoolzadeh-Darzi ◽  
Hassan Ahmad ◽  
Abolfazl Moeini ◽  
Baharak Motamedvaziri

2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


Sign in / Sign up

Export Citation Format

Share Document