Impacts of El Niño and La Niña on the U.S. Climate during Northern Summer

2007 ◽  
Vol 20 (10) ◽  
pp. 2165-2177 ◽  
Author(s):  
Zhuo Wang ◽  
C-P. Chang ◽  
Bin Wang

Abstract The impacts of El Niño and La Niña on the U.S. climate during northern summer are analyzed separately. Composite analyses reveal that a continental-scale anomalous high dominates over most of North America during La Niña events and leads to hot and dry summers over the central United States. However, the impacts of El Niño over North America are weaker and more variable. A linear barotropic model is used to explore the maintenance of the anomalous patterns. Various forcing terms derived from observations via a single-level vorticity budget analysis are used to drive the model. When the barotropic model is driven by the total forcing (Rossby wave source plus transient eddy forcing plus nonlinear interactions), the model simulations resemble the observed patterns, and a strong and extensive anticyclone is reproduced in the La Niña simulation. The model responses to the individual forcing terms suggested that the vorticity stretching term ( fD) and the transient eddy forcing contribute most to the responses over North America. The stretching term ( fD) excites a low in the El Niño simulation and a high in the La Niña simulation over North America. However, the transient eddy forcing favors an anomalous high over North America in both El Niño and La Niña simulations, such that it weakens the El Niño pattern and strengthens the La Niña pattern.

2012 ◽  
Vol 47 (3-4) ◽  
pp. 421-435 ◽  
Author(s):  
Xuezhi Bai ◽  
Jia Wang

Atmospheric teleconnection circulation patterns associated with severe and mild ice cover over the Great Lakes are investigated using the composite analysis of lake ice data and National Center of Environmental Prediction (NCEP) reanalysis data for the period 1963–2011. The teleconnection pattern associated with the severe ice cover is the combination of a negative North Atlantic Oscillation (NAO) or Arctic Oscillation (AO) and negative phase of Pacific/North America (PNA) pattern, while the pattern associated with the mild ice cover is the combination of a positive PNA (or an El Niño) and a positive phase of the NAO/AO. These two extreme ice conditions are associated with the North American ridge–trough variations. The intensified ridge–trough system produces a strong northwest-to-southeast tilted ridge and trough and increases the anomalous northwesterly wind, advecting cold, dry Arctic air to the Great Lakes. The weakened ridge–trough system produces a flattened ridge and trough, and promotes a climatological westerly wind, advecting warm, dry air from western North America to the Great Lakes. Although ice cover for all the individual lakes responds roughly linearly and symmetrically to both phases of the NAO/AO, and roughly nonlinearly and asymmetrically to El Niño and La Niña events, the overall ice cover response to individual NAO/AO or Niño3.4 index is not statistically significant. The combined NAO/AO and Niño3.4 indices can be used to reliably project severe ice cover during the simultaneous –NAO/AO and La Niña events, and mild ice cover during the simultaneous +NAO/AO and El Niño events.


2019 ◽  
Vol 32 (21) ◽  
pp. 7483-7506 ◽  
Author(s):  
Yuntao Wei ◽  
Hong-Li Ren

Abstract This study investigates modulation of El Niño–Southern Oscillation (ENSO) on the Madden–Julian oscillation (MJO) propagation during boreal winter. Results show that the spatiotemporal evolution of MJO manifests as a fast equatorially symmetric propagation from the Indian Ocean to the equatorial western Pacific (EWP) during El Niño, whereas the MJO during La Niña is very slow and tends to frequently “detour” via the southern Maritime Continent (MC). The westward group velocity of the MJO is also more significant during El Niño. Based on the dynamics-oriented diagnostics, it is found that, during El Niño, the much stronger leading suppressed convection over the EWP excites a significant front Walker cell, which further triggers a larger Kelvin wave easterly wind anomaly and premoistening and heating effects to the east. However, the equatorial Rossby wave to the west tends to decouple with the MJO convection. Both effects can result in fast MJO propagation. The opposite holds during La Niña. A column-integrated moisture budget analysis reveals that the sea surface temperature anomaly driving both the eastward and equatorward gradients of the low-frequency moisture anomaly during El Niño, as opposed to the westward and poleward gradients during La Niña, induces moist advection over the equatorial eastern MC–EWP region due to the intraseasonal wind anomaly and therefore enhances the zonal asymmetry of the moisture tendency, supporting fast propagation. The role of nonlinear advection by synoptic-scale Kelvin waves is also nonnegligible in distinguishing fast and slow MJO modes. This study emphasizes the crucial roles of dynamical wave feedback and moisture–convection feedback in modulating the MJO propagation by ENSO.


2021 ◽  
pp. 1-35
Author(s):  
Seon Tae Kim ◽  
Yun-Young Lee ◽  
Ji-Hyun Oh ◽  
A-Young Lim

AbstractThis study presents the ability of seasonal forecast models to represent the observed mid-latitude teleconnection associated with El Niño-Southern Oscillation (ENSO) events over the North American region for the winter months of December, January, and February. Further, the impacts of the associated errors on regional forecast performance for winter temperatures are evaluated, with a focus on one-month lead time forecasts. In most models, there exists a strong linear relationship of temperature anomalies with ENSO and, thus, a clear anomaly sign separation between both ENSO phases persists throughout the winter, whereas linear relationships are weak in observations. This leads to a difference in the temperature forecast performance between the two ENSO phases. Forecast verification scores show that the winter season warming (cooling) events during El Niño in northern (southern) North America are more correctly forecasted in the models than the cooling (warming) events during La Niña. One possible reason for this result is that the remote atmospheric teleconnection pattern in the models is almost linear or symmetric between the El Niño and La Niña phases. The strong linear atmospheric teleconnection appears to be associated with the models’ failure in simulating the westward shift of the tropical Pacific rainfall response for the La Niña phase compared to that for the El Niño phase, which is attributed to the warmer central tropical Pacific in the models. This study highlights that understanding how the predictive performance of climate models varies according to El Niño or La Niña phases is very important when utilizing predictive information from seasonal forecast models.


2017 ◽  
Vol 74 (2) ◽  
pp. 487-511 ◽  
Author(s):  
Michael Goss ◽  
Steven B. Feldstein

Abstract Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.


2018 ◽  
Vol 31 (20) ◽  
pp. 8339-8349 ◽  
Author(s):  
Michael Goss ◽  
Sukyoung Lee ◽  
Steven B. Feldstein ◽  
Noah S. Diffenbaugh

A daily El Niño–Southern Oscillation (ENSO) index is developed based on precipitation rate and is used to investigate subseasonal time-scale extratropical circulation anomalies associated with ENSO-like convective heating. The index, referred to as the El Niño precipitation index (ENPI), is anomalously positive when there is El Niño–like convection. Conversely, the ENPI is anomalously negative when there is La Niña–like convection. It is found that when precipitation becomes El Niño–like (La Niña–like) on subseasonal time scales, the 300-hPa geopotential height field over the North Pacific and western North America becomes El Niño–like (La Niña–like) within 5–10 days. The composites show a small association with the MJO. These results are supported by previous modeling studies, which show that the response over the North Pacific and western North America to an equatorial Pacific heating anomaly occurs within about one week. This suggests that the mean seasonal extratropical response to El Niño (La Niña) may in effect simply be the average of the subseasonal response to subseasonally varying El Niño–like (La Niña–like) convective heating. Implications for subseasonal to seasonal forecasting are discussed.


2016 ◽  
Vol 29 (6) ◽  
pp. 2201-2220 ◽  
Author(s):  
Mingcheng Chen ◽  
Tim Li ◽  
Xinyong Shen ◽  
Bo Wu

Abstract Observed SST anomaly (SSTA) in the equatorial eastern Pacific exhibits an asymmetric evolution characteristic between El Niño and La Niña. While El Niño is characterized by a rapid decay after its peak and a fast phase transition to a cold episode in the following winter, La Niña is characterized by a weaker decay after its peak and a reintensification of cold SSTA in the second year. The relative roles of dynamic (wind field) and thermodynamic (heat flux) processes in causing the asymmetric evolutions are investigated through a mixed layer heat budget analysis. The result shows both dynamic and thermodynamic processes contribute to the evolution asymmetry. The former is related to asymmetric wind responses in the western Pacific, whereas the latter is associated with asymmetric cloud–radiation–SST and evaporation–SST feedbacks. A strong negative SSTA tendency occurs during El Niño decaying phase, compared to a much weaker positive SSTA tendency during La Niña decaying phase. Such a difference leads to an SSTA sign change for El Niño but no sign change for La Niña by the end of summer of the second year. A season-dependent coupled instability kicks in during northern fall, leading to the development of a La Niña by end of the second year for El Niño, but the reoccurrence of a La Niña episode by end of the second year for La Niña. The overall heat budget analysis during the entire ENSO evolutions indicates the thermodynamic process is as important as the dynamic process in causing the El Niño–La Niña evolution asymmetry. The fundamental difference of the current result with previous theories is further discussed.


2020 ◽  
Vol 33 (14) ◽  
pp. 6009-6024
Author(s):  
Bor-Ting Jong ◽  
Mingfang Ting ◽  
Richard Seager ◽  
Weston B. Anderson

AbstractEl Niño–Southern Oscillation (ENSO) teleconnections have been recognized as possible negative influences on crop yields in the United States during the summer growing season, especially in a developing La Niña summer. This study examines the physical processes of the ENSO summer teleconnections and remote impacts on the United States during a multiyear La Niña life cycle. Since 1950, a developing La Niña summer is either when an El Niño is transitioning to a La Niña or when a La Niña is persisting. Due to the distinct prior ENSO conditions, the oceanic and atmospheric characteristics in the tropics are dissimilar in these two different La Niña summers, leading to different teleconnection patterns. During the transitioning summer, the decaying El Niño and the developing La Niña induce suppressed deep convection over both the subtropical western Pacific (WP) and the tropical central Pacific (CP). Both of these two suppressed convection regions induce Rossby wave propagation extending toward North America, resulting in a statistically significant anomalous anticyclone over northeastern North America and, therefore, a robust warming signal over the Midwest. In contrast, during the persisting summer, only one suppressed convection region is present over the tropical CP induced by the La Niña SST forcing, resulting in a weak and insignificant extratropical teleconnection. Experiments from a stationary wave model confirm that the suppressed convection over the subtropical WP during the transitioning summer not only contributes substantially to the robust warming over the Midwest but also causes the teleconnections to be different from those in the persisting summer.


2021 ◽  
pp. 1-47
Author(s):  
Bor-Ting Jong ◽  
Mingfang Ting ◽  
Richard Seager

AbstractDuring the summer when an El Niño is transitioning to a La Niña, the extratropical teleconnections exert robust warming anomalies over the United States Midwest threatening agricultural production. This study assesses the performance of current climate models in capturing the prominent observed extratropical responses over North America during the transitioning La Niña summer, based on Atmospheric General Circulation Model experiments and coupled models from the North American Multimodel Ensemble (NMME). The ensemble mean of the SST-forced experiments across the transitioning La Niña summers does not capture the robust warming in the Midwest. The SST-forced experiments do not produce consistent subtropical western Pacific (WP) negative precipitation anomalies and this leads to the poor simulations of extratropical teleconnections over North America. In the NMME models, with active air-sea interaction, the negative WP precipitation anomalies show better agreement across the models and with observations. However, the downstream wave-train pattern and the resulting extratropical responses over North America exhibit large disagreement across the models and are consistently weaker than in observations. Furthermore, in these climate models, an anomalous anticyclone does not robustly translate into warm anomaly over the Midwest, in disagreement with observations. This work suggests that, during the El Niño to La Niña transitioning summer, active air-sea interaction is important in simulating tropical precipitation over the WP. Nevertheless, skillful representations of the Rossby wave propagation and land-atmosphere processes in climate models are also essential for skillful simulations of extratropical responses over North America.


2017 ◽  
Vol 30 (14) ◽  
pp. 5221-5241 ◽  
Author(s):  
Yuanyuan Guo ◽  
Mingfang Ting ◽  
Zhiping Wen ◽  
Dong Eun Lee

A neural-network-based cluster technique, the so-called self-organizing map (SOM), was performed to extract distinct sea surface temperature (SST) anomaly patterns during boreal winter. The SOM technique has advantages in nonlinear feature extraction compared to the commonly used empirical orthogonal function analysis and is widely used in meteorology. The eight distinguishable SOM patterns so identified represent three La Niña–like patterns, two near-normal patterns, and three El Niño–like patterns. These patterns show the varied amplitude and location of the SST anomalies associated with El Niño and La Niña, such as the central Pacific (CP) and eastern Pacific (EP) El Niño. The impact of each distinctive SOM pattern on winter-mean surface temperature and precipitation changes over North America was examined. Based on composite maps with observational data, each SOM pattern corresponds to a distinguishable spatial structure of temperature and precipitation anomaly over North America, which seems to result from differing wave train patterns, extending from the tropics to mid–high latitudes induced by longitudinally shifted tropical heating. The corresponding teleconnection as represented by the National Center for Atmospheric Research Community Atmospheric Model, version 4 (CAM4), was compared with the observational results. It was found that the 16-member ensemble average of the CAM4 experiments with prescribed SST can reproduce the observed atmospheric circulation responses to the different SST SOM patterns, which suggests that the circulation differences are largely SST driven rather than due to internal atmospheric variability.


Sign in / Sign up

Export Citation Format

Share Document