Errors in the winter temperature response to ENSO over North America in seasonal forecast models

2021 ◽  
pp. 1-35
Author(s):  
Seon Tae Kim ◽  
Yun-Young Lee ◽  
Ji-Hyun Oh ◽  
A-Young Lim

AbstractThis study presents the ability of seasonal forecast models to represent the observed mid-latitude teleconnection associated with El Niño-Southern Oscillation (ENSO) events over the North American region for the winter months of December, January, and February. Further, the impacts of the associated errors on regional forecast performance for winter temperatures are evaluated, with a focus on one-month lead time forecasts. In most models, there exists a strong linear relationship of temperature anomalies with ENSO and, thus, a clear anomaly sign separation between both ENSO phases persists throughout the winter, whereas linear relationships are weak in observations. This leads to a difference in the temperature forecast performance between the two ENSO phases. Forecast verification scores show that the winter season warming (cooling) events during El Niño in northern (southern) North America are more correctly forecasted in the models than the cooling (warming) events during La Niña. One possible reason for this result is that the remote atmospheric teleconnection pattern in the models is almost linear or symmetric between the El Niño and La Niña phases. The strong linear atmospheric teleconnection appears to be associated with the models’ failure in simulating the westward shift of the tropical Pacific rainfall response for the La Niña phase compared to that for the El Niño phase, which is attributed to the warmer central tropical Pacific in the models. This study highlights that understanding how the predictive performance of climate models varies according to El Niño or La Niña phases is very important when utilizing predictive information from seasonal forecast models.

2012 ◽  
Vol 47 (3-4) ◽  
pp. 421-435 ◽  
Author(s):  
Xuezhi Bai ◽  
Jia Wang

Atmospheric teleconnection circulation patterns associated with severe and mild ice cover over the Great Lakes are investigated using the composite analysis of lake ice data and National Center of Environmental Prediction (NCEP) reanalysis data for the period 1963–2011. The teleconnection pattern associated with the severe ice cover is the combination of a negative North Atlantic Oscillation (NAO) or Arctic Oscillation (AO) and negative phase of Pacific/North America (PNA) pattern, while the pattern associated with the mild ice cover is the combination of a positive PNA (or an El Niño) and a positive phase of the NAO/AO. These two extreme ice conditions are associated with the North American ridge–trough variations. The intensified ridge–trough system produces a strong northwest-to-southeast tilted ridge and trough and increases the anomalous northwesterly wind, advecting cold, dry Arctic air to the Great Lakes. The weakened ridge–trough system produces a flattened ridge and trough, and promotes a climatological westerly wind, advecting warm, dry air from western North America to the Great Lakes. Although ice cover for all the individual lakes responds roughly linearly and symmetrically to both phases of the NAO/AO, and roughly nonlinearly and asymmetrically to El Niño and La Niña events, the overall ice cover response to individual NAO/AO or Niño3.4 index is not statistically significant. The combined NAO/AO and Niño3.4 indices can be used to reliably project severe ice cover during the simultaneous –NAO/AO and La Niña events, and mild ice cover during the simultaneous +NAO/AO and El Niño events.


2007 ◽  
Vol 20 (10) ◽  
pp. 2165-2177 ◽  
Author(s):  
Zhuo Wang ◽  
C-P. Chang ◽  
Bin Wang

Abstract The impacts of El Niño and La Niña on the U.S. climate during northern summer are analyzed separately. Composite analyses reveal that a continental-scale anomalous high dominates over most of North America during La Niña events and leads to hot and dry summers over the central United States. However, the impacts of El Niño over North America are weaker and more variable. A linear barotropic model is used to explore the maintenance of the anomalous patterns. Various forcing terms derived from observations via a single-level vorticity budget analysis are used to drive the model. When the barotropic model is driven by the total forcing (Rossby wave source plus transient eddy forcing plus nonlinear interactions), the model simulations resemble the observed patterns, and a strong and extensive anticyclone is reproduced in the La Niña simulation. The model responses to the individual forcing terms suggested that the vorticity stretching term ( fD) and the transient eddy forcing contribute most to the responses over North America. The stretching term ( fD) excites a low in the El Niño simulation and a high in the La Niña simulation over North America. However, the transient eddy forcing favors an anomalous high over North America in both El Niño and La Niña simulations, such that it weakens the El Niño pattern and strengthens the La Niña pattern.


2017 ◽  
Vol 74 (2) ◽  
pp. 487-511 ◽  
Author(s):  
Michael Goss ◽  
Steven B. Feldstein

Abstract Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.


2018 ◽  
Vol 31 (20) ◽  
pp. 8339-8349 ◽  
Author(s):  
Michael Goss ◽  
Sukyoung Lee ◽  
Steven B. Feldstein ◽  
Noah S. Diffenbaugh

A daily El Niño–Southern Oscillation (ENSO) index is developed based on precipitation rate and is used to investigate subseasonal time-scale extratropical circulation anomalies associated with ENSO-like convective heating. The index, referred to as the El Niño precipitation index (ENPI), is anomalously positive when there is El Niño–like convection. Conversely, the ENPI is anomalously negative when there is La Niña–like convection. It is found that when precipitation becomes El Niño–like (La Niña–like) on subseasonal time scales, the 300-hPa geopotential height field over the North Pacific and western North America becomes El Niño–like (La Niña–like) within 5–10 days. The composites show a small association with the MJO. These results are supported by previous modeling studies, which show that the response over the North Pacific and western North America to an equatorial Pacific heating anomaly occurs within about one week. This suggests that the mean seasonal extratropical response to El Niño (La Niña) may in effect simply be the average of the subseasonal response to subseasonally varying El Niño–like (La Niña–like) convective heating. Implications for subseasonal to seasonal forecasting are discussed.


2020 ◽  
Vol 33 (14) ◽  
pp. 6009-6024
Author(s):  
Bor-Ting Jong ◽  
Mingfang Ting ◽  
Richard Seager ◽  
Weston B. Anderson

AbstractEl Niño–Southern Oscillation (ENSO) teleconnections have been recognized as possible negative influences on crop yields in the United States during the summer growing season, especially in a developing La Niña summer. This study examines the physical processes of the ENSO summer teleconnections and remote impacts on the United States during a multiyear La Niña life cycle. Since 1950, a developing La Niña summer is either when an El Niño is transitioning to a La Niña or when a La Niña is persisting. Due to the distinct prior ENSO conditions, the oceanic and atmospheric characteristics in the tropics are dissimilar in these two different La Niña summers, leading to different teleconnection patterns. During the transitioning summer, the decaying El Niño and the developing La Niña induce suppressed deep convection over both the subtropical western Pacific (WP) and the tropical central Pacific (CP). Both of these two suppressed convection regions induce Rossby wave propagation extending toward North America, resulting in a statistically significant anomalous anticyclone over northeastern North America and, therefore, a robust warming signal over the Midwest. In contrast, during the persisting summer, only one suppressed convection region is present over the tropical CP induced by the La Niña SST forcing, resulting in a weak and insignificant extratropical teleconnection. Experiments from a stationary wave model confirm that the suppressed convection over the subtropical WP during the transitioning summer not only contributes substantially to the robust warming over the Midwest but also causes the teleconnections to be different from those in the persisting summer.


MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 651-658
Author(s):  
SMITHA ANIL NAIR ◽  
D. S. PAI ◽  
M. RAJEEVAN

Using Cold Wave (CW) information of 86 stations from Indian main land during the cold weather season (November to March) for the last 40 years (1971-2010), various statistical aspects of cold waves (CWs) and severe cold waves (SCWs) such as climatology and trend were examined. The link of CWs/SCWs with ENSO phases (La Nina & El Nino) was also examined. It was observed that many stations from north, northwest, east and central India together named as core CW zone (CCZ) experienced highest number of CW/SCW waves with relatively higher frequency during January.  Noticeable decrease (increase) in the frequency and spatial coverage of CW/SCW days compared to their climatological values were observed during the El Nino (La Nina) years. There were significant decreasing trends in the CW/SCW days over most of the stations from CCZ. The total number of CW/SCW days/per decade over CCZ showed noticeable decrease during the recent decades 1991-2000 and 2001-2010, which coincided with the warmest decades for the country as well as for the globe. Associated with intense and persistent CW/SCW events, large human mortality were reported during some years of the study period.


2021 ◽  
pp. 1-47
Author(s):  
Bor-Ting Jong ◽  
Mingfang Ting ◽  
Richard Seager

AbstractDuring the summer when an El Niño is transitioning to a La Niña, the extratropical teleconnections exert robust warming anomalies over the United States Midwest threatening agricultural production. This study assesses the performance of current climate models in capturing the prominent observed extratropical responses over North America during the transitioning La Niña summer, based on Atmospheric General Circulation Model experiments and coupled models from the North American Multimodel Ensemble (NMME). The ensemble mean of the SST-forced experiments across the transitioning La Niña summers does not capture the robust warming in the Midwest. The SST-forced experiments do not produce consistent subtropical western Pacific (WP) negative precipitation anomalies and this leads to the poor simulations of extratropical teleconnections over North America. In the NMME models, with active air-sea interaction, the negative WP precipitation anomalies show better agreement across the models and with observations. However, the downstream wave-train pattern and the resulting extratropical responses over North America exhibit large disagreement across the models and are consistently weaker than in observations. Furthermore, in these climate models, an anomalous anticyclone does not robustly translate into warm anomaly over the Midwest, in disagreement with observations. This work suggests that, during the El Niño to La Niña transitioning summer, active air-sea interaction is important in simulating tropical precipitation over the WP. Nevertheless, skillful representations of the Rossby wave propagation and land-atmosphere processes in climate models are also essential for skillful simulations of extratropical responses over North America.


Diversity ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 97 ◽  
Author(s):  
Mario F. Garcés-Restrepo ◽  
John L. Carr ◽  
Alan Giraldo

Few long-term demographic studies have been conducted on freshwater turtles of South America, despite the need for this type of inquiry to investigate natural variation and strengthen conservation efforts for these species. In this study, we examined the variation in demography of the Chocoan River Turtle (Rhinoclemmys nasuta) based on a population from an island locality in the Colombian Pacific region between 2005 and 2017. We calculated survival, recapture, and transition probabilities, and the effects of stream substrate and El Niño–Southern Oscillation (ENSO) phases (El Niño, Neutral, La Niña) on these variables using a multi-state model. We found differences in survival probabilities between ENSO phases, likely as a consequence of an increase in flood events. In addition, we found support for survival being greater in muddy streams than rocky streams, possibly because it is easier to escape or hide in mud substrates. Recapture probabilities varied by life stages; differences in the probability of recapture between size classes were associated with the high fidelity to territories by adults. The present increases in frequency and severity of El Niño and La Niña may exacerbate the consequences of climatic regimes on natural populations of turtles by increasing the mortality caused by drastic phenomena such as floods.


2010 ◽  
Vol 20 (1) ◽  
pp. 120-132 ◽  
Author(s):  
Clyde W. Fraisse ◽  
Zhengjun Hu ◽  
Eric H. Simonne

Most of the winter vegetable production in the southeastern United States is located in Florida. High-value vegetable crops are grown under intensive fertilization and irrigation management practices using drip, overhead, or seepage irrigation systems. Rainfall events may raise the water table in fields irrigated by seepage irrigation resulting in leaching of nutrients when the level is lowered to remove excess water. The objective of this study was to assess the effect of El Niño–Southern Oscillation (ENSO) phases on rainfall distribution and leaching rain occurrences during the fall, winter, and spring tomato (Solanum lycopersicum) growing seasons using long-term weather records available for main producing areas. Differences in fall growing season mean precipitation during El Niño, La Niña, and neutral years were found to be nonsignificant. Winter and spring mean precipitations during El Niño, La Niña, and neutral years were found to be significantly different. Winter and spring average rainfall amounts during La Niña and neutral years were lower than during El Niño years. During El Niño years, at least one leaching rainfall event of 1.0 inch or more in 1 day occurred at all locations and all planting seasons and two of these events occurred in more than 9 of 10 years except during the winter and spring planting seasons at the Tamiami Trail station located in Miami–Dade County. During the fall growing season of El Niño years, three to four 1.0 inch or more in 1-day leaching rainfalls may be expected at least 4 of 5 years at all locations. In the case of larger leaching rainfall events (3.0 inches or more recorded in 3 days or 4.0 inches or more recorded in 7 days), the probability of having at least one event was mostly less than 0.80. Based on these results, nitrogen fertilizer supplemental applications of 30 to 120 lb/acre could be applied during the fall growing season of all ENSO phases and during all planting seasons of El Niño years. Using current fertilizer prices, one supplemental fertilizer application of 30 lb/acre nitrogen and 16.6 lb/acre potassium costs $55/acre. Assuming a median wholesale price of $12 per 25-lb box, this additional cost may be offset by a modest yield increase of 4.6 boxes/acre (compared with a typical 2500 25-lb box/acre marketable yield). These results suggest that ENSO phases could be used to predict supplemental fertilizer needs for tomato, but adjustments to local weather conditions may be needed.


2017 ◽  
Vol 30 (14) ◽  
pp. 5221-5241 ◽  
Author(s):  
Yuanyuan Guo ◽  
Mingfang Ting ◽  
Zhiping Wen ◽  
Dong Eun Lee

A neural-network-based cluster technique, the so-called self-organizing map (SOM), was performed to extract distinct sea surface temperature (SST) anomaly patterns during boreal winter. The SOM technique has advantages in nonlinear feature extraction compared to the commonly used empirical orthogonal function analysis and is widely used in meteorology. The eight distinguishable SOM patterns so identified represent three La Niña–like patterns, two near-normal patterns, and three El Niño–like patterns. These patterns show the varied amplitude and location of the SST anomalies associated with El Niño and La Niña, such as the central Pacific (CP) and eastern Pacific (EP) El Niño. The impact of each distinctive SOM pattern on winter-mean surface temperature and precipitation changes over North America was examined. Based on composite maps with observational data, each SOM pattern corresponds to a distinguishable spatial structure of temperature and precipitation anomaly over North America, which seems to result from differing wave train patterns, extending from the tropics to mid–high latitudes induced by longitudinally shifted tropical heating. The corresponding teleconnection as represented by the National Center for Atmospheric Research Community Atmospheric Model, version 4 (CAM4), was compared with the observational results. It was found that the 16-member ensemble average of the CAM4 experiments with prescribed SST can reproduce the observed atmospheric circulation responses to the different SST SOM patterns, which suggests that the circulation differences are largely SST driven rather than due to internal atmospheric variability.


Sign in / Sign up

Export Citation Format

Share Document