scholarly journals A Hemispheric Mechanism for the Atlantic Multidecadal Oscillation

2007 ◽  
Vol 20 (11) ◽  
pp. 2706-2719 ◽  
Author(s):  
Mihai Dima ◽  
Gerrit Lohmann

Abstract The physical processes associated with the ∼70-yr period climate mode, known as the Atlantic multidecadal oscillation (AMO), are examined. Based on analyses of observational data, a deterministic mechanism relying on atmosphere–ocean–sea ice interactions is proposed for the AMO. Variations in the thermohaline circulation are reflected as uniform sea surface temperature anomalies in the North Atlantic. These anomalies are associated with a hemispheric wavenumber-1 sea level pressure (SLP) structure in the atmosphere that is amplified through atmosphere–ocean interactions in the North Pacific. The SLP pattern and its associated wind field affect the sea ice export through Fram Strait, the freshwater balance in the northern North Atlantic, and consequently the strength of the large-scale ocean circulation. It generates sea surface temperature anomalies with opposite signs in the North Atlantic and completes a negative feedback. The authors find that the time scale of the cycle is associated with the thermohaline circulation adjustment to freshwater forcing, the SST response to it, the oceanic adjustment in the North Pacific, and the sea ice response to the wind forcing. Finally, it is argued that the Great Salinity Anomaly in the late 1960s and 1970s is part of AMO.

2009 ◽  
Vol 39 (1) ◽  
pp. 234-247 ◽  
Author(s):  
Arnaud Czaja

Abstract In an attempt to elucidate the role of atmospheric and oceanic processes in setting a vigorous ocean overturning circulation in the North Atlantic but not in the North Pacific, a comparison of the observed atmospheric circulation and net surface freshwater fluxes over the North Atlantic and Pacific basins is conducted. It is proposed that the more erratic meridional displacements of the atmospheric jet stream over the North Atlantic sector is instrumental in maintaining high surface salinities in its subpolar gyre. In addition, it is suggested that the spatial pattern of the net freshwater flux at the sea surface favors higher subpolar Atlantic salinity, because the geographical line separating net precipitation from net evaporation is found well south of the time-mean gyre separation in the North Pacific, whereas the two lines tend to coincide in the North Atlantic. Numerical experiments with an idealized two-gyre system confirm that these differences impact the salinity budget of the subpolar gyre. Further analysis of a coupled climate model in which the Atlantic meridional overturning cell has been artificially weakened suggests that the more erratic jet fluctuations in the Atlantic and the shift of the zero [net evaporation minus precipitation (E − P)] line are likely explained by features independent of the state of the thermohaline circulation. It is thus proposed that the atmospheric circulation helps “locking” high surface salinities and an active coupling between upper and deep ocean layers in the North Atlantic rather than in the North Pacific basin.


2018 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between observables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different important regions of the globe. In particular they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality and dependences between the different components of the climate system.


2010 ◽  
Vol 23 (14) ◽  
pp. 3835-3854 ◽  
Author(s):  
Xia Zhao ◽  
Jianping Li

Abstract The spatiotemporal characteristics of the winter-to-winter recurrence (WWR) of sea surface temperature anomalies (SSTA) in the Northern Hemisphere (NH) are comprehensively studied through lag correlation analysis. On this basis the relationships between the SSTA WWR and the WWR of the atmospheric circulation anomalies, El Niño–Southern Oscillation (ENSO), and SSTA interdecadal variability are also investigated. Results show that the SSTA WWR occurs over most parts of the North Pacific and Atlantic Oceans, but the spatiotemporal distributions of the SSTA WWR are distinctly different in these two oceans. Analyses indicate that the spatiotemporal distribution of the SSTA WWR in the North Atlantic Ocean is consistent with the spatial distribution of the seasonal cycle of its mixed layer depth (MLD), whereas that in the North Pacific Ocean, particularly the recurrence timing, cannot be fully explained by the change in the MLD between winter and summer in some regions. In addition, the atmospheric circulation anomalies also exhibit the WWR at the mid–high latitude of the NH, which is mainly located in eastern Asia, the central North Pacific, and the North Atlantic. The sea level pressure anomalies (SLPA) in the central North Pacific are essential for the occurrence of the SSTA WWR in this region. Moreover, the strongest positive correlation occurs when the SLPA lead SSTA in the central North Pacific by 1 month, which suggests that the atmospheric forcing on the ocean may play a dominant role in this region. Therefore, the “reemergence mechanism” is not the only process influencing the SSTA WWR, and the WWR of the atmospheric circulation anomalies may be one of the causes of the SSTA WWR in the central North Pacific. Finally, the occurrence of the SSTA WWR in the NH is closely related to SSTA interdecadal variability in the NH, but it is linearly independent of ENSO.


2018 ◽  
Vol 9 (3) ◽  
pp. 1063-1083 ◽  
Author(s):  
Stéphane Vannitsem ◽  
Pierre Ekelmans

Abstract. The causal dependences (in a dynamical sense) between the dynamics of three different coupled ocean–atmosphere basins, the North Atlantic, the North Pacific and the tropical Pacific region (Nino3.4), have been explored using data from three reanalysis datasets, namely ORA-20C, ORAS4 and ERA-20C. The approach is based on convergent cross mapping (CCM) developed by Sugihara et al. (2012) that allows for evaluating the dependences between variables beyond the classical teleconnection patterns based on correlations. The use of CCM on these data mostly reveals that (i) the tropical Pacific (Nino3.4 region) only influences the dynamics of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically forcing the North Atlantic on a monthly basis; (iii) on longer timescales (interannual), the dynamics of the North Pacific and the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline circulation. These findings shed a new light on the coupling between these three different regions of the globe. In particular, they call for a deep reassessment of the way teleconnections are interpreted and for a more rigorous way to evaluate dynamical dependences between the different components of the climate system.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manon Clairbaux ◽  
Jérôme Fort ◽  
Paul Mathewson ◽  
Warren Porter ◽  
Hallvard Strøm ◽  
...  

AbstractClimate models predict that by 2050 the Arctic Ocean will be sea ice free each summer. Removing this barrier between the Atlantic and the Pacific will modify a wide range of ecological processes, including bird migration. Using published information, we identified 29 arctic-breeding seabird species, which currently migrate in the North Atlantic and could shift to a transarctic migration towards the North Pacific. We also identified 24 arctic-breeding seabird species which may shift from a migratory strategy to high-arctic year-round residency. To illustrate the biogeographical consequences of such drastic migratory shifts, we performed an in-depth study of little auks (Alle alle), the most numerous artic seabird. Coupling species distribution models and climatic models, we assessed the adequacy of future wintering and breeding areas for transarctic migrants and high-arctic year-round residents. Further, we used a mechanistic bioenergetics model (Niche Mapper), to compare the energetic costs of current little auk migration in the North Atlantic with potential transarctic and high-arctic residency strategies. Surprisingly, our results indicate that transarctic little auk migration, from the North Atlantic towards the North Pacific, may only be half as costly, energetically, than high-arctic residency or migration to the North Atlantic. Our study illustrates how global warming may radically modify the biogeography of migratory species, and provides a general methodological framework linking migratory energetics and spatial ecology.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


Sign in / Sign up

Export Citation Format

Share Document