scholarly journals Statistical Downscaling Using Localized Constructed Analogs (LOCA)*

2014 ◽  
Vol 15 (6) ◽  
pp. 2558-2585 ◽  
Author(s):  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Bridget L. Thrasher

Abstract A new technique for statistically downscaling climate model simulations of daily temperature and precipitation is introduced and demonstrated over the western United States. The localized constructed analogs (LOCA) method produces downscaled estimates suitable for hydrological simulations using a multiscale spatial matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog days is chosen by matching the model field to be downscaled to observed days over the region that is positively correlated with the point being downscaled, which leads to a natural independence of the downscaling results to the extent of the domain being downscaled. Then, the one candidate analog day that best matches in the local area around the grid cell being downscaled is the single analog day used there. Most grid cells are downscaled using only the single locally selected analog day, but locations whose neighboring cells identify a different analog day use a weighted combination of the center and adjacent analog days to reduce edge discontinuities. By contrast, existing constructed analog methods typically use a weighted average of the same 30 analog days for the entire domain. By greatly reducing this averaging, LOCA produces better estimates of extreme days, constructs a more realistic depiction of the spatial coherence of the downscaled field, and reduces the problem of producing too many light-precipitation days. The LOCA method is more computationally expensive than existing constructed analog techniques, but it is still practical for downscaling numerous climate model simulations with limited computational resources.

2014 ◽  
Vol 119 (23) ◽  
pp. 13,153-13,162 ◽  
Author(s):  
Chao Li ◽  
Eva Sinha ◽  
Daniel E. Horton ◽  
Noah S. Diffenbaugh ◽  
Anna M. Michalak

2020 ◽  
Vol 16 (4) ◽  
pp. 1325-1346
Author(s):  
Jessica A. Badgeley ◽  
Eric J. Steig ◽  
Gregory J. Hakim ◽  
Tyler J. Fudge

Abstract. Reconstructions of past temperature and precipitation are fundamental to modeling the Greenland Ice Sheet and assessing its sensitivity to climate. Paleoclimate information is sourced from proxy records and climate-model simulations; however, the former are spatially incomplete while the latter are sensitive to model dynamics and boundary conditions. Efforts to combine these sources of information to reconstruct spatial patterns of Greenland climate over glacial–interglacial cycles have been limited by assumptions of fixed spatial patterns and a restricted use of proxy data. We avoid these limitations by using paleoclimate data assimilation to create independent reconstructions of mean-annual temperature and precipitation for the last 20 000 years. Our method uses oxygen isotope ratios of ice and accumulation rates from long ice-core records and extends this information to all locations across Greenland using spatial relationships derived from a transient climate-model simulation. Standard evaluation metrics for this method show that our results capture climate at locations without ice-core records. Our results differ from previous work in the reconstructed spatial pattern of temperature change during abrupt climate transitions; this indicates a need for additional proxy data and additional transient climate-model simulations. We investigate the relationship between precipitation and temperature, finding that it is frequency dependent and spatially variable, suggesting that thermodynamic scaling methods commonly used in ice-sheet modeling are overly simplistic. Our results demonstrate that paleoclimate data assimilation is a useful tool for reconstructing the spatial and temporal patterns of past climate on timescales relevant to ice sheets.


2007 ◽  
Vol 11 (3) ◽  
pp. 1097-1114 ◽  
Author(s):  
B. Hingray ◽  
A. Mezghani ◽  
T. A. Buishand

Abstract. To produce probability distributions for regional climate change in surface temperature and precipitation, a probability distribution for global mean temperature increase has been combined with the probability distributions for the appropriate scaling variables, i.e. the changes in regional temperature/precipitation per degree global mean warming. Each scaling variable is assumed to be normally distributed. The uncertainty of the scaling relationship arises from systematic differences between the regional changes from global and regional climate model simulations and from natural variability. The contributions of these sources of uncertainty to the total variance of the scaling variable are estimated from simulated temperature and precipitation data in a suite of regional climate model experiments conducted within the framework of the EU-funded project PRUDENCE, using an Analysis Of Variance (ANOVA). For the area covered in the 2001–2004 EU-funded project SWURVE, five case study regions (CSRs) are considered: NW England, the Rhine basin, Iberia, Jura lakes (Switzerland) and Mauvoisin dam (Switzerland). The resulting regional climate changes for 2070–2099 vary quite significantly between CSRs, between seasons and between meteorological variables. For all CSRs, the expected warming in summer is higher than that expected for the other seasons. This summer warming is accompanied by a large decrease in precipitation. The uncertainty of the scaling ratios for temperature and precipitation is relatively large in summer because of the differences between regional climate models. Differences between the spatial climate-change patterns of global climate model simulations make significant contributions to the uncertainty of the scaling ratio for temperature. However, no meaningful contribution could be found for the scaling ratio for precipitation due to the small number of global climate models in the PRUDENCE project and natural variability, which is often the largest source of uncertainty. In contrast, for temperature, the contribution of natural variability to the total variance of the scaling ratio is small, in particular for the annual mean values. Simulation from the probability distributions of global mean warming and the scaling ratio results in a wider range of regional temperature change than that in the regional climate model experiments. For the regional change in precipitation, however, a large proportion of the simulations (about 90%) is within the range of the regional climate model simulations.


2013 ◽  
Vol 26 (21) ◽  
pp. 8556-8575 ◽  
Author(s):  
Valérie Dulière ◽  
Yongxin Zhang ◽  
Eric P. Salathé

Abstract Trends in extreme temperature and precipitation in two regional climate model simulations forced by two global climate models are compared with observed trends over the western United States. The observed temperature extremes show substantial and statistically significant trends across the western United States during the late twentieth century, with consistent results among individual stations. The two regional climate models simulate temporal trends that are consistent with the observed trends and reflect the anthropogenic warming signal. In contrast, no such clear trends or correspondence between the observations and simulations is found for extreme precipitation, likely resulting from the dominance of the natural variability over systematic climate change during the period. However, further analysis of the variability of precipitation extremes shows strong correspondence between the observed precipitation indices and increasing oceanic Niño index (ONI), with regionally coherent patterns found for the U.S. Northwest and Southwest. Both regional climate simulations reproduce the observed relationship with ONI, indicating that the models can represent the large-scale climatic links with extreme precipitation. The regional climate model simulations use the Weather Research and Forecasting (WRF) Model and Hadley Centre Regional Model (HadRM) forced by the ECHAM5 and the Hadley Centre Climate Model (HadCM) global models for the 1970–2007 time period. Comparisons are made to station observations from the Historical Climatology Network (HCN) locations over the western United States. This study focused on temperature and precipitation extreme indices recommended by the Expert Team on Climate Change Detection Monitoring and Indices (ETCCDMI).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiv Priyam Raghuraman ◽  
David Paynter ◽  
V. Ramaswamy

AbstractThe observed trend in Earth’s energy imbalance (TEEI), a measure of the acceleration of heat uptake by the planet, is a fundamental indicator of perturbations to climate. Satellite observations (2001–2020) reveal a significant positive globally-averaged TEEI of 0.38 ± 0.24 Wm−2decade−1, but the contributing drivers have yet to be understood. Using climate model simulations, we show that it is exceptionally unlikely (<1% probability) that this trend can be explained by internal variability. Instead, TEEI is achieved only upon accounting for the increase in anthropogenic radiative forcing and the associated climate response. TEEI is driven by a large decrease in reflected solar radiation and a small increase in emitted infrared radiation. This is because recent changes in forcing and feedbacks are additive in the solar spectrum, while being nearly offset by each other in the infrared. We conclude that the satellite record provides clear evidence of a human-influenced climate system.


Sign in / Sign up

Export Citation Format

Share Document