Numerical Investigation of Mechanisms Underlying Oceanic Internal Gravity Wave Power-Law Spectra

2020 ◽  
Vol 50 (9) ◽  
pp. 2713-2733
Author(s):  
Yulin Pan ◽  
Brian K. Arbic ◽  
Arin D. Nelson ◽  
Dimitris Menemenlis ◽  
W. R. Peltier ◽  
...  

AbstractWe consider the power-law spectra of internal gravity waves in a rotating and stratified ocean. Field measurements have shown considerable variability of spectral slopes compared to the high-wavenumber, high-frequency portion of the Garrett–Munk (GM) spectrum. Theoretical explanations have been developed through wave turbulence theory (WTT), where different power-law solutions of the kinetic equation can be found depending on the mechanisms underlying the nonlinear interactions. Mathematically, these are reflected by the convergence properties of the so-called collision integral (CL) at low- and high-frequency limits. In this work, we study the mechanisms in the formation of the power-law spectra of internal gravity waves, utilizing numerical data from the high-resolution modeling of internal waves (HRMIW) in a region northwest of Hawaii. The model captures the power-law spectra in broad ranges of space and time scales, with scalings ω−2.05±0.2 in frequency and m−2.58±0.4 in vertical wavenumber. The latter clearly deviates from the GM76 spectrum but is closer to a family of induced-diffusion-dominated solutions predicted by WTT. Our analysis of nonlinear interactions is performed directly on these model outputs, which is fundamentally different from previous work assuming a GM76 spectrum. By applying a bicoherence analysis and evaluations of modal energy transfer, we show that the CL is dominated by nonlocal interactions between modes in the power-law range and low-frequency inertial motions. We further identify induced diffusion and the near-resonances at its spectral vicinity as dominating the formation of power-law spectrum.

2021 ◽  
Author(s):  
Robert Vicari

<p>Highly idealized model studies suggest that convectively generated internal gravity waves in the troposphere with horizontal wavelengths on the order of a few kilometers may affect the lifetime, spacing, and depth of clouds and convection. To answer whether such a convection-wave coupling occurs in the real atmosphere, one needs to find corresponding events in observations. In general, the study of high-frequency internal gravity wave-related phenomena in the troposphere is a challenging task because they are usually small-scale and intermittent. To overcome case-by-case studies, it is desirable to have an automatic method to analyze as much data as possible and provide enough independent and diverse evidence.<br>Here, we focus on brightness temperature satellite images, in particular so-called satellite water vapor channels. These channels measure the radiation at wavelengths corresponding to the energy emitted by water vapor and provide cloud-independent observations of internal gravity waves, in contrast to visible and other infrared satellite channels where one relies on the wave impacts on clouds. In addition, since these water vapor channels are sensitive to certain vertical layers in the troposphere, combining the images also reveals some vertical structure of the observed waves.<br>We propose an algorithm based on local Fourier analyses to extract information about high-frequency wave patterns in given brightness temperature images. This method allows automatic detection and analysis of many wave patterns in a given domain at once, resulting in a climatology that provides an initial observational basis for further research. Using data from the instrument ABI on board the satellite GOES-16 during the field campaign EUREC<sup>4</sup>A, we demonstrate the capabilities and limitations of the method. Furthermore, we present the respective climatology of the detected waves and discuss approaches based on this to address the initial question.</p>


2010 ◽  
Vol 40 (12) ◽  
pp. 2605-2623 ◽  
Author(s):  
Yuri V. Lvov ◽  
Kurt L. Polzin ◽  
Esteban G. Tabak ◽  
Naoto Yokoyama

Abstract Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations. A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime. The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.


2013 ◽  
Vol 43 (6) ◽  
pp. 1225-1239 ◽  
Author(s):  
Matthew H. Alford ◽  
Andrey Y. Shcherbina ◽  
Michael C. Gregg

Abstract Shipboard ADCP and towed CTD measurements are presented of a near-inertial internal gravity wave radiating away from a zonal jet associated with the Subtropical Front in the North Pacific. Three-dimensional spatial surveys indicate persistent alternating shear layers sloping downward and equatorward from the front. As a result, depth-integrated ageostrophic shear increases sharply equatorward of the front. The layers have a vertical wavelength of about 250 m and a slope consistent with a wave of frequency 1.01f. They extend at least 100 km south of the front. Time series confirm that the shear is associated with a downward-propagating near-inertial wave with frequency within 20% of f. A slab mixed layer model forced with shipboard and NCEP reanalysis winds suggests that wind forcing was too weak to generate the wave. Likewise, trapping of the near-inertial motions at the low-vorticity edge of the front can be ruled out because of the extension of the features well south of it. Instead, the authors suggest that the wave arises from an adjustment process of the frontal flow, which has a Rossby number about 0.2–0.3.


1993 ◽  
Vol 247 ◽  
pp. 205-229
Author(s):  
Hong Ma

The effect of a geostrophic boundary current on internal gravity waves is studied with a reduced-gravity model. We found that the boundary current not only modifies the coastal Kelvin wave, but also forms wave guides for short internal gravity waves. The combined effects of current shear, the boundary, and the slope of the interface create the trapping mechanism. These trapped internal gravity waves appear as groups of discrete zonal modes. They have wavelengths comparable to or shorter than the internal Rossby radius of deformation. Their phase speeds are close to that of the internal Kelvin wave. However, they can propagate both in, or opposite to, the direction of the Kelvin wave. The results of the present work suggest the possibility of finding an energetic internal gravity wave phenomenon with near-inertial frequency in a broad geostrophic boundary current.


2006 ◽  
Vol 40 (1) ◽  
pp. 97-102
Author(s):  
Michael T. McCord ◽  
Earl W. Carey

High frequency sonar systems have been used by the Naval Research Laboratory to study nonlinear internal gravity waves and define the fine structure of ocean temperature and salinity layers that are found in coastal waters, usually within 130 meters of the surface. Of particular interest is the fine structure of these waves, which are being investigated using high sensitivity sonar systems that provide 1 m horizontal resolution and less than 8 cm vertical resolution. This article describes the integration of commercial and custom-designed components, including a recently patented transmitter-receiver switch. The significance of this T-R switch is that it improves the sensitivity of short-range sonar systems, enables a more refined measurement of nonlinear internal gravity waves, and could have broad industry applications.


2014 ◽  
Vol 7 (12) ◽  
pp. 4123-4132 ◽  
Author(s):  
P. Šácha ◽  
U. Foelsche ◽  
P. Pišoft

Abstract. GPS radio occultation (RO) data have proved to be a great tool for atmospheric monitoring and studies. In the past decade, they were frequently used for analyses of the internal gravity waves in the upper troposphere and lower stratosphere region. Atmospheric density is the first quantity of state gained in the retrieval process and is not burdened by additional assumptions. However, there are no studies elaborating in detail the utilization of GPS RO density profiles for gravity wave analyses. In this paper, we introduce a method for density background separation and a methodology for internal gravity wave analysis using the density profiles. Various background choices are discussed and the correspondence between analytical forms of the density and temperature background profiles is examined. In the stratosphere, a comparison between the power spectrum of normalized density and normalized dry temperature fluctuations confirms the suitability of the density profiles' utilization. In the height range of 8–40 km, results of the continuous wavelet transform are presented and discussed. Finally, the limits of our approach are discussed and the advantages of the density usage are listed.


2012 ◽  
Vol 30 (2) ◽  
pp. 303-315 ◽  
Author(s):  
K. M. Huang ◽  
A. Z. Liu ◽  
S. D. Zhang ◽  
F. Yi ◽  
Z. Li

Abstract. Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value.


2005 ◽  
Vol 23 (11) ◽  
pp. 3431-3437 ◽  
Author(s):  
A. N. Oleynikov ◽  
Ch. Jacobi ◽  
D. M. Sosnovchik

Abstract. A procedure of revealing parameters of internal gravity waves from meteor radar wind measurements is presented. The method is based on dividing the measuring volume into different parts and, using wavelet analysis, calculating the phase progression of frequency peaks in the vertical and horizontal direction. Thus, the distribution of vertical and horizontal wavelengths and directions of IGW energy propagation, using meteor radar data, has been obtained. The method was applied to a 4-month data set obtained in July and August, 1998 and 1999. As expected, the majority of waves have been found to propagate upwards, although a considerable number seem to propagate downwards as well. High-frequency (intrinsic periods T* of less than 2 h) waves are dominating. The distribution of waves over the course of an average day is only weakly structured, with weak maxima in the morning and evening.


Sign in / Sign up

Export Citation Format

Share Document