scholarly journals Deep Intraseasonal Variability in the Central Equatorial Atlantic

2018 ◽  
Vol 48 (12) ◽  
pp. 2851-2865 ◽  
Author(s):  
Franz Philip Tuchen ◽  
Peter Brandt ◽  
Martin Claus ◽  
Rebecca Hummels

AbstractBesides the zonal flow that dominates the seasonal and long-term variability in the equatorial Atlantic, energetic intraseasonal meridional velocity fluctuations are observed in large parts of the water column. We use 15 years of partly full-depth velocity data from an equatorial mooring at 23°W to investigate intraseasonal variability and specifically the downward propagation of intraseasonal energy from the near-surface into the deep ocean. Between 20 and 50 m, intraseasonal variability at 23°W peaks at periods between 30 and 40 days. It is associated with westward-propagating tropical instability waves, which undergo an annual intensification in August. At deeper levels down to about 2000 m considerable intraseasonal energy is still observed. A frequency–vertical mode decomposition reveals that meridional velocity fluctuations are more energetic than the zonal ones for periods < 50 days. The energy peak at 30–40 days and at vertical modes 2–5 excludes equatorial Rossby waves and suggests Yanai waves to be associated with the observed intraseasonal energy. Yanai waves that are considered to be generated by tropical instability waves propagate their energy from the near-surface west of 23°W downward and eastward to eventually reach the mooring location. The distribution of intraseasonal energy at the mooring position depends largely on the dominant frequency and the time, depth, and longitude of excitation, while the dominant vertical mode of the Yanai waves plays only a minor role. Observations also show the presence of weaker intraseasonal variability at 23°W below 2000 m that cannot be associated with tropical instability waves.

2013 ◽  
Vol 30 (8) ◽  
pp. 1884-1895 ◽  
Author(s):  
Verena Hormann ◽  
Rick Lumpkin ◽  
Renellys C. Perez

Abstract A generalized method is developed to determine the position of the Atlantic northern cold tongue front across its zonal extent from satellite sea surface temperature (SST) data. Previous approaches estimated the frontal position subjectively or individually, calling for a more objective technique that is suitable for large datasets. The developed methodology is based on a median frontal SST, and associated positional uncertainties are on the order of 0.3° latitude for the period 1998–2011. Frontal characteristics are generally consistent with tropical instability waves (TIWs) and interannual variations are large. Application to drifter observations shows how the new methodology can be used to better understand circulation features near the northern cold tongue front. A drifter pair deployed on the eastern side of a passing TIW crest north of the front revealed that the trajectories of the drifters were clearly influenced by the shape of the front and they did not cross the front, but rather stayed close together about 2.5° north of the front. In a more complete analysis using all available drifters near the Atlantic northern cold tongue front, only about 12% of the trajectories crossed the front. Analyses in an along- and cross-frontal frame of reference complement isopycnal coordinate mapping, and tropical Atlantic drifter velocities averaged in frontal coordinates indicate a broadened shear zone between the northern branch of the South Equatorial Current and North Equatorial Countercurrent as well as meridional convergence near the front.


2002 ◽  
Vol 32 (9) ◽  
pp. 2715-2722 ◽  
Author(s):  
Robert F. Contreras

Abstract Reynolds sea surface temperature (SST) data showing tropical instability waves (TIWs) in the tropical Pacific are analyzed along with current measurements from the Tropical Atmosphere–Ocean (TAO) buoy array and wind speeds from the European Remote Sensing Satellite (ERS) -1 and -2 scatterometers. TIWs are visible as undulations in the SST cold fronts that delineate the northern and southern boundaries of the cold tongue in the equatorial Pacific. The SST pattern results from advection of the SST front by instabilities in the near-surface equatorial currents. Although the waves are seen on both sides of the Pacific cold tongue and north of the equator in the Atlantic, they are most intense, and thereby most observable, in the north equatorial Pacific. The combination of data used in this analysis provides information about these waves, the factors controlling them, and their coupling to the atmosphere on annual and interannual timescales. On annual timescales, the TIWs generally establish a strong signal in July east of about 140°W with a westward phase speed of about 0.5 m s−1. By August, the waves usually occupy the longitudes between 160° and 100°W and continue to propagate west at roughly the same speed. With the onset of the warm season in the equatorial cold tongue (spring), the signal typically weakens and the propagation speeds show large variations. On interannual timescales, activity is strongest during the cold phase of the ENSO cycle (La Niña) when the cold tongue is most pronounced; the waves are weak or nonexistent during the warm phase of ENSO (El Niño) when the SST front is weak. The TIW signature in SST is noticeable throughout all seasons of the year provided that the gradient in SST at 140°W is greater than about 0.25°C (100 km)−1. In addition, analysis of the currents underlines the importance of the background currents to the zonal propagation speeds.


2010 ◽  
Vol 40 (9) ◽  
pp. 2091-2106 ◽  
Author(s):  
Renellys C. Perez ◽  
Meghan F. Cronin ◽  
William S. Kessler

Abstract Shipboard measurements and a model are used to describe the mean structure of meridional–vertical tropical cells (TCs) in the central equatorial Pacific and a secondary circulation associated with the northern front of the cold tongue. The shape of the front is convoluted by the passage of tropical instability waves (TIWs). When velocities are averaged in a coordinate system centered on the instantaneous position of the northern front, the measurements show a near-surface minimum in northward flow north of the surface front (convergent flow near the front). This convergence and inferred downwelling extend below the surface mixed layer, tilt poleward with depth, and are meridionally bounded by regions of divergence and upwelling. Similarly, the model shows that, on average, surface cold tongue water moves northward toward the frontal region and dives below tilted front, whereas subsurface water north of the front moves southward toward the front, upwells, and then moves northward in the surface mixed layer. The model is used to demonstrate that this mean quasi-adiabatic secondary circulation is not a frozen field that migrates with the front but is instead highly dependent on the phase of the TIWs: southward-upwelling flow on the warm side of the front tends to occur when the front is displaced southward, whereas northward-downwelling flow on the cold side of the front occurs when the front is displaced northward. Consequently, when averaged in geographic coordinates, the observed and simulated TCs appear to be equatorially asymmetric and show little trace of a secondary circulation near the mean front.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jonathan Sherman ◽  
Ajit Subramaniam ◽  
Maxim Y. Gorbunov ◽  
Ana Fernández-Carrera ◽  
Rainer Kiko ◽  
...  

In the Equatorial Atlantic nitrogen availability is assumed to control phytoplankton dynamics. However, in situ measurements of phytoplankton physiology and productivity are surprisingly sparse in comparison with the North Atlantic. In addition to the formation of the Equatorial cold tongue in the boreal summer, tropical instability waves (TIWs) and related short-term processes may locally cause episodic events of enhanced nutrient supply to the euphotic layer. Here, we assess changes in phytoplankton photophysiology in response to such episodic events as well as short-term nutrient addition experiments using a pair of custom-built fluorometers that measure chlorophyll a (Chl a) variable fluorescence and fluorescence lifetimes. The fluorometers were deployed during a transatlantic cruise along the Equator in the fall of 2019. We hypothesized that the Equatorial Atlantic is nitrogen-limited, with an increasing degree of limitation to the west where the cold tongue is not prominent, and that infrequent nitrate injection by TIW related processes are the primary source alleviating this limitation. We further hypothesized phytoplankton are well acclimated to the low levels of nitrogen, and once nitrogen is supplied, they can rapidly utilize it to stimulate growth and productivity. Across three TIW events encountered, we observed increased productivity and chlorophyll a concentration concurrent with a decreased photochemical conversion efficiency and overall photophysiological competency. Moreover, the observed decrease in photosynthetic turnover rates toward the western section suggested a 70% decrease in growth rates compared to their maximum values under nutrient-replete conditions. This decrease aligned with the increased growth rates observed following 24 h incubation with added nitrate in the western section. These results support our hypotheses that nitrogen is the limiting factor in the region and that phytoplankton are in a state of balanced growth, waiting to “body surf” waves of nutrients which fuel growth and productivity.


2007 ◽  
Vol 37 (4) ◽  
pp. 855-872 ◽  
Author(s):  
John M. Lyman ◽  
Gregory C. Johnson ◽  
William S. Kessler

Abstract Tropical instability waves (TIWs) within a half-degree of the equator in the Pacific Ocean have been consistently observed in meridional velocity with periods of around 20 days. On the other hand, near 5°N, TIWs have been observed in sea surface height (SSH), thermocline depth, and velocity to have periods near 30 days. Tropical Atmosphere–Ocean (TAO) Project moored equatorial velocity and temperature time series are used to investigate the spatial and temporal structure of TIWs during 3 years of La Niña conditions from 1998 through 2001. Along 140°W, where the TIW temperature and velocity variabilities are at their maxima, these variabilities include two distinct TIWs with periods of 17 and 33 days, rather than one broadbanded process. As predicted by modeling studies, the 17-day TIW variability is shown to occur not only in meridional velocity at the equator, but also in subsurface temperature at 2°N and 2°S, while the 33-day TIW variability is observed primarily in subsurface temperature at 5°N. These two TIWs, respectively, are shown to have characteristics similar to a Yanai wave/surface-trapped instability and an unstable first meridional mode Rossby wave. One implication of such a description is that the velocity variability on the equator is not directly associated with the dominant 33-day variability along 5°N.


2009 ◽  
Vol 30 (4) ◽  
pp. 241-255 ◽  
Author(s):  
Gabriela Athié ◽  
Frédéric Marin ◽  
Anne-Marie Treguier ◽  
Bernard Bourlès ◽  
Catherine Guiavarc’h

2014 ◽  
Vol 42 (11-12) ◽  
pp. 3139-3150 ◽  
Author(s):  
Balachandrudu Narapusetty ◽  
Ben P. Kirtman

2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


Sign in / Sign up

Export Citation Format

Share Document