scholarly journals The evolving response of mesopelagic fishes to declining midwater oxygen concentrations in the southern and central California Current

2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Zhang ◽  
Feng Jiang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann

AbstractThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO’s autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated. This can lead to misinterpretations of causality and the spurious identification of Atlantic precursors for ENSO. Revisiting this issue under consideration of seasonality, time-varying ENSO frequency, and greenhouse warming, we demonstrate that the cross-correlation characteristics between NTA SST and ENSO, are consistent with a one-way Pacific to Atlantic forcing, even though the interpretation of lead-lag relationships may suggest otherwise.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


1992 ◽  
Vol 6 ◽  
pp. 78-78
Author(s):  
Thomas M. Cronin ◽  
H.J. Dowsett

Pliocene faunal events in tropical and subtropical regions of the Americas and the Caribbean have been causally linked to global climatic events, particularly, progressive cooling and increased amplitude of climatic cycles between 3.5 and 2.0 Ma. However, the rate and magnitude of Pliocene temperature changes has been determined in only a few climate proxy records. Our study contrasts paleoceanographic conditions at 3 Ma, an extremely warm period in many areas, with conditions 2.4 Ma, a much cooler interval, in equator-to-pole transects for the North Atlantic and the North Pacific Oceans. By using microfaunal data (ostracodes from ocean margin environments and planktic foraminifers from deep sea cores), quantitative factor analytic and modern analog dissimilarity coefficient analyses were carried out on faunas from the following sections.Our studies lead to the following conclusions: (1) Equator-to-pole thermal gradients in the oceans at 3.0 Ma were not as steep as they are today, but thermal gradients at 2.4 Ma were steeper than those today; (2)At 3 Ma middle to high latitudes were substantially warmer than today, but tropical regions were about the same; (3)Substantial cooling occurred in middle and high latitudes in the western North Pacific Ocean and the western North Atlantic between 3 Ma and 2.4 Ma; (4)Ocean water temperatures off the southeastern U.S. remained the same or cooled only slightly between 3 Ma and 2.4 Ma. Our results support the hypothesis that ocean circulation changes, probably resulting from the closure of near surface water by the Isthmus of Panama, had significant impact on equator-to-pole heat transport and global climate between about 3 and 2.4 Ma. They also argue against the hypothesis that climatically induced ocean temperature changes were directly linked to a major marine extinction in the southwestern North Atlantic and Caribbean.


2013 ◽  
Vol 141 (10) ◽  
pp. 3610-3625 ◽  
Author(s):  
Kevin M. Grise ◽  
Seok-Woo Son ◽  
John R. Gyakum

Abstract Extratropical cyclones play a principal role in wintertime precipitation and severe weather over North America. On average, the greatest number of cyclones track 1) from the lee of the Rocky Mountains eastward across the Great Lakes and 2) over the Gulf Stream along the eastern coastline of North America. However, the cyclone tracks are highly variable within individual winters and between winter seasons. In this study, the authors apply a Lagrangian tracking algorithm to examine variability in extratropical cyclone tracks over North America during winter. A series of methodological criteria is used to isolate cyclone development and decay regions and to account for the elevated topography over western North America. The results confirm the signatures of four climate phenomena in the intraseasonal and interannual variability in North American cyclone tracks: the North Atlantic Oscillation (NAO), the El Niño–Southern Oscillation (ENSO), the Pacific–North American pattern (PNA), and the Madden–Julian oscillation (MJO). Similar signatures are found using Eulerian bandpass-filtered eddy variances. Variability in the number of extratropical cyclones at most locations in North America is linked to fluctuations in Rossby wave trains extending from the central tropical Pacific Ocean. Only over the far northeastern United States and northeastern Canada is cyclone variability strongly linked to the NAO. The results suggest that Pacific sector variability (ENSO, PNA, and MJO) is a key contributor to intraseasonal and interannual variability in the frequency of extratropical cyclones at most locations across North America.


2009 ◽  
Vol 6 (10) ◽  
pp. 2025-2039 ◽  
Author(s):  
M. Grelaud ◽  
A. Schimmelmann ◽  
L. Beaufort

Abstract. The varved sedimentary AD 1917–2004 record from the depositional center of the Santa Barbara Basin (SBB, California) was analyzed with monthly to triannual resolution to yield relative abundances of six coccolithophore species representing at least 96% of the coccolithophore assemblage. Seasonal/annual relative abundances respond to climatic and surface hydrographic conditions in the SBB, whereby (i) the three species G. oceanica, H. carteri and F. profunda are characteristic of the strength of the northward flowing warm California Counter Current, (ii) the two species G. ericsonii and G. muellerae are associated with the cold equatorward flowing California Current, (iii) and E. huxleyi appears to be endemic to the SBB. Spectral analyses on relative abundances of these species show that all are influenced by the El Niño Southern Oscillation (ENSO) and/or by the Pacific Decadal Oscillation (PDO). Increased relative abundances of G. oceanica and H. carteri are associated with warm ENSO events, G. muellerae responds to warm PDO events and the abundance of G. ericsonii increases during cold PDO events. Morphometric parameters measured on E. huxleyi, G. muellerae and G. oceanica indicate increasing coccolithophore shell carbonate mass from ~1917 until 2004 concomitant with rising pCO2 and sea surface temperature in the region of the SBB.


2006 ◽  
Vol 19 (6) ◽  
pp. 896-915 ◽  
Author(s):  
Xiaolan L. Wang ◽  
H. Wan ◽  
Val R. Swail

Abstract This study assessed the climate and trend of cyclone activity in Canada using mainly the occurrence frequency of cyclone deepening events and deepening rates, which were derived from hourly mean sea level pressure data observed at 83 Canadian stations for up to 50 years (1953–2002). Trends in the frequency of cyclone activity were estimated by logistic regression analysis, and trends of seasonal extreme cyclone intensity, by linear regression analysis. The results of trend analysis show that, among the four seasons, winter cyclone activity has shown the most significant trends. It has become significantly more frequent, more durable, and stronger in the lower Canadian Arctic, but less frequent and weaker in the south, especially along the southeast and southwest coasts. Winter cyclone deepening rates have increased in the zone around 60°N but decreased in the Great Lakes area and southern Prairies–British Columbia. However, extreme winter cyclone activity seems to have experienced a weaker increase in northwest-central Canada but a stronger decline in the Great Lakes area and in southern Prairies. The results also show more frequent summer cyclone activity with slower deepening rates on the east coast, as well as less frequent cyclone activity with faster deepening rates in the Great Lakes area in autumn. Cyclone activity in Canada was found to be closely related to the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and El Niño–Southern Oscillation (ENSO). Overall, cyclone activity in Canada is most closely related to the NAO. The simultaneous NAO index explains about 44% (41%) of the winter (autumn) cyclone activity variance in the east coast, 31% of winter cyclone activity variance in the 60°–70°N zone, and 17% of autumn cyclone activity variance in the Great Lakes area. Also, in several regions (e.g., the east coast, the southwest, and the 60°–70°N zone) up to 15% of the seasonal cyclone activity variance can be explained by the NAO/PDO/ENSO index one–three seasons earlier, which is useful for seasonal forecasting.


2017 ◽  
Vol 17 (2) ◽  
pp. 124-144 ◽  
Author(s):  
Zeineddine Nouaceur ◽  
Ovidiu Murărescu ◽  
George Murătoreanu

AbstractThe IPCC climate models predict, for the Central Europe, are for climate changes, being seen variability of temperature, with a growing trend of 1-2,5° C (with 1° C for alpine zone – Carpathians and 2-2,5° C for plains). Current observations in the Romanian plain are not consistent, with an existence of a multiannual variability of temperature and precipitations depending on cyclonal and anti-ciclonal activity. The research is based on calculation of reduced centered index, also the graphical chronological method in information processing (MGCTI) of „Bertin Matrix” type, to show current trends of the spatio-temporal variability of precipitation in the context of global climate change. These are in line with the movement of air masses in Europe in general, and implicitly in Romania, with particular regard to the southern region of the country where the Romanian Plain. The variability of short-term global climate is generally associated with coupling phases of oceanic and atmospheric phenomena including El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). While El Niño Southern Oscillation (ENSO) affects climate variability in the world, the North Atlantic Oscillation (NAO) is the climate model dominant in the North Atlantic region. The latter cyclic oscillation whose role is still under debate could explain the variability of rainfall in much of the, central Europe area, and support the hypothesis of a return of the rains marking the end of years of drought in Romanian plain. Faced with such great changes that today affect the central Europe region and given the complexity of spatial and temporal dimensions of the climatic signal, a more thorough research of causes and retroactions would allow for a better understanding of the mechanisms behind this new trend.


2015 ◽  
Vol 28 (15) ◽  
pp. 6096-6112 ◽  
Author(s):  
Kimberly Smith ◽  
Courtenay Strong ◽  
Shih-Yu Wang

Abstract The eastern Great Basin (GB) in the western United States is strongly affected by droughts that influence water management decisions. Precipitation that falls in the GB, particularly in the Great Salt Lake (GSL) basin encompassed by the GB, provides water for millions of people living along the Wasatch Front Range. Western U.S. precipitation is known to be influenced by El Niño–Southern Oscillation (ENSO) as well as the Pacific decadal oscillation (PDO) in the North Pacific. Historical connectivity between GB precipitation and Pacific Ocean sea surface temperatures (SSTs) on interannual to multidecadal time scales is evaluated for 20 models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). While the majority of the models had realistic ENSO and PDO spatial patterns in the SSTs, the simulated influence of these two modes on GB precipitation tended to be too strong for ENSO and too weak for PDO. Few models captured the connectivity at a quasi-decadal period influenced by the transition phase of the Pacific quasi-decadal oscillation (QDO; a recently identified climate mode that influences GB precipitation). Some of the discrepancies appear to stem from models not capturing the observed tendency for the PDO to modulate the sign of the ENSO–GB precipitation teleconnection. Of all of the models, CCSM4 most consistently captured observed connections between Pacific SST variability and GB precipitation on the examined time scales.


2008 ◽  
Vol 21 (15) ◽  
pp. 3872-3889 ◽  
Author(s):  
Jesse Kenyon ◽  
Gabriele C. Hegerl

Abstract The influence of large-scale modes of climate variability on worldwide summer and winter temperature extremes has been analyzed, namely, that of the El Niño–Southern Oscillation, the North Atlantic Oscillation, and Pacific interdecadal climate variability. Monthly indexes for temperature extremes from worldwide land areas are used describe moderate extremes, such as the number of exceedences of the 90th and 10th climatological percentiles, and more extreme events such as the annual, most extreme temperature. This study examines which extremes show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show that temperature extremes are substantially affected by large-scale circulation patterns, and they show distinct regional patterns of response to modes of climate variability. The effects of the El Niño–Southern Oscillation are seen throughout the world but most clearly around the Pacific Rim and throughout all of North America. Likewise, the influence of Pacific interdecadal variability is strongest in the Northern Hemisphere, especially around the Pacific region and North America, but it extends to the Southern Hemisphere. The North Atlantic Oscillation has a strong continent-wide effect for Eurasia, with a clear but weaker effect over North America. Modes of variability influence the shape of the daily temperature distribution beyond a simple shift, often affecting cold and warm extremes and sometimes daytime and nighttime temperatures differently. Therefore, for reliable attribution of changes in extremes as well as prediction of future changes, changes in modes of variability need to be accounted for.


Sign in / Sign up

Export Citation Format

Share Document