scholarly journals Variability and Mixing of the Filchner Overflow Plume on the Continental Slope, Weddell Sea

2019 ◽  
Vol 49 (1) ◽  
pp. 3-20 ◽  
Author(s):  
K. Daae ◽  
I. Fer ◽  
E. Darelius

AbstractA large fraction of Antarctic Bottom Water is produced in the Weddell Sea, through mixing between the cold and dense shelf water masses and the warm and saline off-shelf water. We present observations of the dense Filchner overflow plume from one mooring at the Filchner sill and two moorings located downstream, on the continental slope. The plume variability over the continental slope at a monthly time scale is related to upstream conditions at the Filchner sill, with a high correlation in density. Revised column-integrated volume transport calculations across the Filchner sill indicate 50% higher values in 2010 compared with the earlier estimates available from 1985. Over the continental slope, the plume thickness fluctuates strongly between less than 25 m and more than 250 m. Observations of elevated temperature variance and high Froude numbers at the plume interface imply high mixing rates and entrainment of ambient water masses. The mixing events typically coincide with shear spikes across the plume. The shear spikes appear quasi-periodically, when counterrotating oscillations with periods of 24 and 72 h align. The clockwise 24-h oscillation is related to diurnal, barotropic tidal currents and topographic vorticity waves, whereas the counterclockwise 72-h oscillation is related to vortex stretching or topographic vorticity waves.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 923-946 ◽  
Author(s):  
M. Azaneu ◽  
R. Kerr ◽  
M. M. Mata

Abstract. We analyzed the ability of the Estimating the Circulation and Climate of the Ocean – Phase II (ECCO2) reanalysis to represent the hydrographic properties and variability of Antarctic Bottom Water (AABW) in the Southern Ocean. We used a 20-year (1992–2011) observational database to perform comparisons of hydrographic properties and reanalysis output for the same time period. Four case studies based on current meter data and the AABW volume transport estimates previously reported in the literature were also evaluated. The opening and maintenance of an oceanic polynya in the Weddell Sea sector is observed after 2004 in the reanalysis product. Moreover, intense deep water production due to deep convection occurs, which leads to a scenario in which the Weddell Sea is flooded with AABW. For this reason, our analyses focused on the period that was identified as more reliable (1992–2004). The main Southern Ocean oceanographic features, as well as the characteristic shape of the regional potential temperature–salinity (θ–S) diagrams, are coincident with observations. However, the reanalysis output produces surface waters that are generally denser than observations due to the reproduction of waters that are generally saltier than expected, which probably resulted from the strong seasonality of sea ice concentrations. Bottom waters are warmer and less dense, while intermediate waters are statistically closest to the observations. The differences in bottom water properties are partially due to the inability of the reanalysis to properly reproduce the formation and export of dense waters from the shelf and the consequent absence of the densest AABW variety for most of the analyzed period. Despite differences in the absolute values, the upper AABW limit (γn ≥ 28.27 kg m−3) and AABW occupied area estimates are coincident with the observations in the World Ocean Circulation Experiment (WOCE) repeat sections SR2 and SR4. Moreover, the AABW volume export and current velocity variability are correlated with the observed time series in the most important region of dense water export (i.e., the Weddell Sea). Despite the consistency in terms of variability, the absolute volume transport and velocity estimates are underrepresented in all cases.


2014 ◽  
Vol 11 (2) ◽  
pp. 1023-1091 ◽  
Author(s):  
M. Azaneu ◽  
R. Kerr ◽  
M. M. Mata

Abstract. We analyzed the ability of the Estimating the Circulation and Climate of the Ocean – Phase II (ECCO2) reanalysis to represent the hydrographic properties and variability of the Antarctic Bottom Water (AABW) in the Southern Ocean. We used a twenty-year observational database to perform comparisons of hydrographic properties and reanalysis data for the same time period (1992–2011). In addition, we evaluated four case studies based on current meter data and the AABW volume transport estimates previously reported in the literature. The main Southern Ocean oceanographic features, as well as the characteristic shape of the regional potential temperature–salinity (θ–S) diagrams, are adequately represented by the reanalysis. However, the opening of an oceanic polynya in the Weddell Sea Sector, which has been clearly visible since 2005, contributed to an unrealistic representation of the hydrographic properties of the Southern Ocean primarily after 2004. In this sense, our analyses focused on the period that was identified as more reliable (1992–2004). In general, the reanalysis data showed surface waters that were warmer, saltier, and denser than observations, which may have resulted from the absence of Ice Shelf Water and from the overestimation of sea ice concentrations that limit oceanic heat loss during austral winters. Intermediate waters were generally colder, fresher, and denser than observations, whereas deep waters were warmer and less dense. These differences in deep water properties were partially a result of the inability to reproduce the densest AABW variety by reanalysis for most of the analyzed period and also because of the model's relatively coarse vertical resolution. Despite differences in absolute values, the upper AABW limit (γn ≥ 28.27 kg m−3) and AABW occupied area were well represented in the WOCE repeat sections SR2 and SR4 for the studied periods. In section WOCE SR3, however, the estimates from the differences were not as well correlated, and the AABW layer thickness was underrepresented. The case studies showed a good representation of the AABW volume export and current velocity variability in the most important region of dense water export (i.e., the Weddell Sea). The exception is the AABW volume transport near the Kerguelen Plateau, in which the rugged local bathymetry and the relatively coarse model resolution hampered a fair representation of the transport variability by the reanalysis. Despite the consistency in terms of variability, absolute volume transport, and velocity, estimates were underrepresented in all cases. Moreover, the reanalysis was capable of reproducing the general variability pattern and trends of the AABW hydrographic properties reported by previous studies. Therefore, the ECCO2 data from the 1992–2004 period was considered adequate for investigating the circulation of the AABW and variability of the hydrographic properties, whereas data from the latter period (2005–2011) must be given careful attention.


2011 ◽  
Vol 8 (6) ◽  
pp. 2197-2235 ◽  
Author(s):  
K. Shimada ◽  
S. Aoki ◽  
K. I. Ohshima ◽  
S. R. Rintoul

Abstract. The WOCE Hydrographic Program (WHP) and repeated hydrographic data were used to document overall property changes of the Antarctic Bottom Water (AABW) in the Australian-Antarctic Basin between the 1990s and 2000s. Strong cooling and freshening is observed on isopycnals for layers denser than γn = 28.30. Changes in average salinity and potential temperature below this isopycnal correspond to basin-wide warming of 1300 ± 200 TW and freshening of 24 ± 3 Gt yr−1. While freshening can be explained by freshening of major source waters, i.e., the High Salinity Shelf Water (HSSW) of the Ross Sea and the dense shelf water formed in the Adélie and George V Land (AGVL) region, extensive warming of the AABW cannot be explained by warming of the source waters. A possible cause of warming of the AABW is a decrease in supply of the Ross Sea Bottom Water (RSBW). Hydrographic profiles between the Drygalski Trough of the Western Ross Sea and 150° E were analyzed in the context of a simple advective-diffusive model to assess the causes of the observed changes. The RSBW has also warmed by a larger amount than its source water (the HSSW). The model suggests that the warming of the RSBW observed between the 1970s and 2000s can be explained by a 21 ± 23% reduction in transport of the RSBW and an enhancement of the vertical diffusion of heat as a result of a 30 ± 7% weakening of the abyssal stratification. Freshening of the HSSW reduced the salinity and density stratification between the bottom water layer and overlying ambient water. Hence, freshening of the HSSW both directly freshened and indirectly warmed the RSBW by enhancing the vertical mixing. A simple box model suggest that changes in property and volume transport (decrease of 6.7% is assumed between the year 1995 and 2005) of the RSBW can explain 51 ± 6% of the warming and 84 ± 10% of the freshening observed in the AABW. These facts demonstrate that changes in both property and volume transport of the RSBW have contributed to the warming and freshening of the AABW in the Australian-Antarctic Basin.


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 419-432 ◽  
Author(s):  
K. Shimada ◽  
S. Aoki ◽  
K. I. Ohshima ◽  
S. R. Rintoul

Abstract. Changes to the properties of Antarctic Bottom Water in the Australian-Antarctic Basin (AA-AABW) between the 1990s and 2000s are documented using data from the WOCE Hydrographic Program (WHP) and repeated hydrographic surveys. Strong cooling and freshening are observed on isopycnal layers denser than γn = 28.30 kg m−3. Changes in the average salinity and potential temperature below this isopycnal correspond to a basin-wide warming of 1300 ± 200 GW and freshening of 24 ± 3 Gt year−1. Recent changes to dense shelf water in the source regions in the Ross Sea and George V Land can explain the freshening of AA-AABW but not its extensive warming. An alternative mechanism for this warming is a decrease in the supply of AABW from the Ross Sea (RSBW). Hydrographic profiles between the western Ross Sea and George V Land (171–158° E) were analyzed with a simple advective-diffusive model to assess the causes of the observed changes. The model suggests that the warming of RSBW observed between the 1970s and 2000s can be explained by a 21 ± 23% reduction in RSBW transport and the enhancement of the vertical diffusion of heat resulting from a 30 ± 7% weakening of the abyssal stratification. The documented freshening of Ross Sea dense shelf water leads to a reduction in both salinity and density stratification. Therefore the direct freshening of RSBW at its source also produces an indirect warming of the RSBW. A simple box model suggests that the changes in RSBW properties and volume transport (a decrease of 6.7% is assumed between the year 1995 and 2005) can explain 51 ± 6% of the warming and 84 ± 10% of the freshening observed in AA-AABW.


2020 ◽  
Author(s):  
Eugene G Morozov ◽  
Dmitry I. Frey ◽  
Roman Y. Tarakanov

Abstract We analyze measurements of bottom currents and thermohaline properties of water north of the Vema Channel with the goal to find pathway continuations of Antarctic Bottom Water flow from the Vema Channel into the Brazil Basin. The analysis is based on CTD/LADCP casts north of the Vema Channel. The flow in the deep Vema Channel consists of two branches. The deepest current flows along the bottom in the center of the channel and the other branch flows above the western wall of the channel. We found two smaller channels of the northern continuation of the deeper bottom flow. These flows become weak and almost disappear at a latitude of 25°30’S. The upper current flows at a depth of 4100-4200 m along the continental slope. We traced this current up to 24°S over a distance exceeding 250 km. This branch transports bottom water that eventually fills the deep basins of the North Atlantic.


2017 ◽  
Author(s):  
Wilton Aguiar ◽  
Mauricio M. Mata ◽  
Rodrigo Kerr

Abstract. Deep convection in open ocean polynyas are common sources of error on the representation of Antarctic Bottom Water (AABW) formation in Ocean General Circulation Models. Even though those events are well described in non-assimilatory ocean simulations, recent appearance of open ocean polynya in Estimating the Circulation and Climate of the Ocean Phase II reanalysis product raises a question if this spurious event is also found in state-of-art reanalysis products. In order to answer this question, we evaluate how three recently released high-resolution ocean reanalysis form AABW in their simulations. We found that two of them (ECCO2 and SoSE) create AABW by open ocean deep convection events in Weddell Sea, showing that assimilation of sea ice has not been enough to avoid open ocean polynya appearance. The third reanalysis – My Ocean University Reading – actually creates AABW by a rather dynamically accurate mechanism, depicting both continental shelf convection, and exporting of Dense Shelf Water to open ocean. Although the accuracy of the AABW formation in this reanalysis allows an advance in represent this process, the differences found between the real ocean and the simulated one suggests that ocean reanalysis still need substantial improvements to accurately represent AABW formation.


2014 ◽  
Vol 44 (11) ◽  
pp. 2921-2937 ◽  
Author(s):  
Yoshihiro Nakayama ◽  
Kay I. Ohshima ◽  
Yoshimasa Matsumura ◽  
Yasushi Fukamachi ◽  
Hiroyasu Hasumi

Abstract At several locations around Antarctica, dense water is formed as a result of intense sea ice formation. When this dense water becomes sufficiently denser than the surrounding water, it descends the continental slope and forms Antarctic Bottom Water (AABW). This study presents the AABW formation off the coast of Cape Darnley [Cape Darnley Bottom Water (CDBW)] in East Antarctica, using a nonhydrostatic model. The model is forced for 8 months by a temporally uniform surface salt flux (because of sea ice formation) estimated from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) data and a heat budget calculation. The authors reproduce AABW formation and associated periodic downslope flows of dense water. Descending pathways of dense water are largely determined by the topography; most dense water flows into depressions on the continental shelf, advects onto the continental slope, and is steered downslope to greater depths by the canyons. Intense sea ice formation is the most important factor in the formation of AABW off Cape Darnley, and the existence of depressions is of only minor importance for the flux of CDBW. The mechanism responsible for the periodic downslope flow of dense water is further analyzed using an idealized model setup. The period of dense water outflow is regulated primarily by the topographic beta effect.


2017 ◽  
Vol 32 (3) ◽  
pp. 304-317 ◽  
Author(s):  
Xiaoxia Huang ◽  
Michael Stärz ◽  
Karsten Gohl ◽  
Gregor Knorr ◽  
Gerrit Lohmann

Sign in / Sign up

Export Citation Format

Share Document