scholarly journals Assessment of the ECCO2 reanalysis on the representation of Antarctic Bottom Water properties

2014 ◽  
Vol 11 (2) ◽  
pp. 1023-1091 ◽  
Author(s):  
M. Azaneu ◽  
R. Kerr ◽  
M. M. Mata

Abstract. We analyzed the ability of the Estimating the Circulation and Climate of the Ocean – Phase II (ECCO2) reanalysis to represent the hydrographic properties and variability of the Antarctic Bottom Water (AABW) in the Southern Ocean. We used a twenty-year observational database to perform comparisons of hydrographic properties and reanalysis data for the same time period (1992–2011). In addition, we evaluated four case studies based on current meter data and the AABW volume transport estimates previously reported in the literature. The main Southern Ocean oceanographic features, as well as the characteristic shape of the regional potential temperature–salinity (θ–S) diagrams, are adequately represented by the reanalysis. However, the opening of an oceanic polynya in the Weddell Sea Sector, which has been clearly visible since 2005, contributed to an unrealistic representation of the hydrographic properties of the Southern Ocean primarily after 2004. In this sense, our analyses focused on the period that was identified as more reliable (1992–2004). In general, the reanalysis data showed surface waters that were warmer, saltier, and denser than observations, which may have resulted from the absence of Ice Shelf Water and from the overestimation of sea ice concentrations that limit oceanic heat loss during austral winters. Intermediate waters were generally colder, fresher, and denser than observations, whereas deep waters were warmer and less dense. These differences in deep water properties were partially a result of the inability to reproduce the densest AABW variety by reanalysis for most of the analyzed period and also because of the model's relatively coarse vertical resolution. Despite differences in absolute values, the upper AABW limit (γn ≥ 28.27 kg m−3) and AABW occupied area were well represented in the WOCE repeat sections SR2 and SR4 for the studied periods. In section WOCE SR3, however, the estimates from the differences were not as well correlated, and the AABW layer thickness was underrepresented. The case studies showed a good representation of the AABW volume export and current velocity variability in the most important region of dense water export (i.e., the Weddell Sea). The exception is the AABW volume transport near the Kerguelen Plateau, in which the rugged local bathymetry and the relatively coarse model resolution hampered a fair representation of the transport variability by the reanalysis. Despite the consistency in terms of variability, absolute volume transport, and velocity, estimates were underrepresented in all cases. Moreover, the reanalysis was capable of reproducing the general variability pattern and trends of the AABW hydrographic properties reported by previous studies. Therefore, the ECCO2 data from the 1992–2004 period was considered adequate for investigating the circulation of the AABW and variability of the hydrographic properties, whereas data from the latter period (2005–2011) must be given careful attention.

Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 923-946 ◽  
Author(s):  
M. Azaneu ◽  
R. Kerr ◽  
M. M. Mata

Abstract. We analyzed the ability of the Estimating the Circulation and Climate of the Ocean – Phase II (ECCO2) reanalysis to represent the hydrographic properties and variability of Antarctic Bottom Water (AABW) in the Southern Ocean. We used a 20-year (1992–2011) observational database to perform comparisons of hydrographic properties and reanalysis output for the same time period. Four case studies based on current meter data and the AABW volume transport estimates previously reported in the literature were also evaluated. The opening and maintenance of an oceanic polynya in the Weddell Sea sector is observed after 2004 in the reanalysis product. Moreover, intense deep water production due to deep convection occurs, which leads to a scenario in which the Weddell Sea is flooded with AABW. For this reason, our analyses focused on the period that was identified as more reliable (1992–2004). The main Southern Ocean oceanographic features, as well as the characteristic shape of the regional potential temperature–salinity (θ–S) diagrams, are coincident with observations. However, the reanalysis output produces surface waters that are generally denser than observations due to the reproduction of waters that are generally saltier than expected, which probably resulted from the strong seasonality of sea ice concentrations. Bottom waters are warmer and less dense, while intermediate waters are statistically closest to the observations. The differences in bottom water properties are partially due to the inability of the reanalysis to properly reproduce the formation and export of dense waters from the shelf and the consequent absence of the densest AABW variety for most of the analyzed period. Despite differences in the absolute values, the upper AABW limit (γn ≥ 28.27 kg m−3) and AABW occupied area estimates are coincident with the observations in the World Ocean Circulation Experiment (WOCE) repeat sections SR2 and SR4. Moreover, the AABW volume export and current velocity variability are correlated with the observed time series in the most important region of dense water export (i.e., the Weddell Sea). Despite the consistency in terms of variability, the absolute volume transport and velocity estimates are underrepresented in all cases.


2013 ◽  
Vol 26 (16) ◽  
pp. 6105-6122 ◽  
Author(s):  
Sarah G. Purkey ◽  
Gregory C. Johnson

Abstract Freshening and warming of Antarctic Bottom Water (AABW) between the 1980s and 2000s are quantified, assessing the relative contributions of water-mass changes and isotherm heave. The analysis uses highly accurate, full-depth, ship-based, conductivity–temperature–depth measurements taken along repeated oceanographic sections around the Southern Ocean. Fresher varieties of AABW are present within the South Pacific and south Indian Oceans in the 2000s compared to the 1990s, with the strongest freshening in the newest waters adjacent to the Antarctic continental slope and rise indicating a recent shift in the salinity of AABW produced in this region. Bottom waters in the Weddell Sea exhibit significantly less water-mass freshening than those in the other two southern basins. However, a decrease in the volume of the coldest, deepest waters is observed throughout the entire Southern Ocean. This isotherm heave causes a salinification and warming on isobaths from the bottom up to the shallow potential temperature maximum. The water-mass freshening of AABW in the Indian and Pacific Ocean sectors is equivalent to a freshwater flux of 73 ± 26 Gt yr−1, roughly half of the estimated recent mass loss of the West Antarctic Ice Sheet. Isotherm heave integrated below 2000 m and south of 30°S equates to a net heat uptake of 34 ± 14 TW of excess energy entering the deep ocean from deep volume loss of AABW and 0.37 ± 0.15 mm yr−1 of sea level rise from associated thermal expansion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2013 ◽  
Vol 118 (9) ◽  
pp. 4213-4227 ◽  
Author(s):  
Marina Azaneu ◽  
Rodrigo Kerr ◽  
Mauricio M. Mata ◽  
Carlos A. E. Garcia

2015 ◽  
Vol 8 (10) ◽  
pp. 3119-3130 ◽  
Author(s):  
C. Heuzé ◽  
J. K. Ridley ◽  
D. Calvert ◽  
D. P. Stevens ◽  
K. J. Heywood

Abstract. Most CMIP5 (Coupled Model Intercomparison Project Phase 5) models unrealistically form Antarctic Bottom Water by open ocean deep convection in the Weddell and Ross seas. To identify the mechanisms triggering Southern Ocean deep convection in models, we perform sensitivity experiments on the ocean model NEMO3.4 forced by prescribed atmospheric fluxes. We vary the vertical velocity scale of the Langmuir turbulence, the fraction of turbulent kinetic energy transferred below the mixed layer, and the background diffusivity and run short simulations from 1980. All experiments exhibit deep convection in the Riiser-Larsen Sea in 1987; the origin is a positive sea ice anomaly in 1985, causing a shallow anomaly in mixed layer depth, hence anomalously warm surface waters and subsequent polynya opening. Modifying the vertical mixing impacts both the climatological state and the associated surface anomalies. The experiments with enhanced mixing exhibit colder surface waters and reduced deep convection. The experiments with decreased mixing give warmer surface waters, open larger polynyas causing more saline surface waters and have deep convection across the Weddell Sea until the simulations end. Extended experiments reveal an increase in the Drake Passage transport of 4 Sv each year deep convection occurs, leading to an unrealistically large transport at the end of the simulation. North Atlantic deep convection is not significantly affected by the changes in mixing parameters. As new climate model overflow parameterisations are developed to form Antarctic Bottom Water more realistically, we argue that models would benefit from stopping Southern Ocean deep convection, for example by increasing their vertical mixing.


2019 ◽  
Vol 49 (1) ◽  
pp. 3-20 ◽  
Author(s):  
K. Daae ◽  
I. Fer ◽  
E. Darelius

AbstractA large fraction of Antarctic Bottom Water is produced in the Weddell Sea, through mixing between the cold and dense shelf water masses and the warm and saline off-shelf water. We present observations of the dense Filchner overflow plume from one mooring at the Filchner sill and two moorings located downstream, on the continental slope. The plume variability over the continental slope at a monthly time scale is related to upstream conditions at the Filchner sill, with a high correlation in density. Revised column-integrated volume transport calculations across the Filchner sill indicate 50% higher values in 2010 compared with the earlier estimates available from 1985. Over the continental slope, the plume thickness fluctuates strongly between less than 25 m and more than 250 m. Observations of elevated temperature variance and high Froude numbers at the plume interface imply high mixing rates and entrainment of ambient water masses. The mixing events typically coincide with shear spikes across the plume. The shear spikes appear quasi-periodically, when counterrotating oscillations with periods of 24 and 72 h align. The clockwise 24-h oscillation is related to diurnal, barotropic tidal currents and topographic vorticity waves, whereas the counterclockwise 72-h oscillation is related to vortex stretching or topographic vorticity waves.


2011 ◽  
Vol 8 (6) ◽  
pp. 2197-2235 ◽  
Author(s):  
K. Shimada ◽  
S. Aoki ◽  
K. I. Ohshima ◽  
S. R. Rintoul

Abstract. The WOCE Hydrographic Program (WHP) and repeated hydrographic data were used to document overall property changes of the Antarctic Bottom Water (AABW) in the Australian-Antarctic Basin between the 1990s and 2000s. Strong cooling and freshening is observed on isopycnals for layers denser than γn = 28.30. Changes in average salinity and potential temperature below this isopycnal correspond to basin-wide warming of 1300 ± 200 TW and freshening of 24 ± 3 Gt yr−1. While freshening can be explained by freshening of major source waters, i.e., the High Salinity Shelf Water (HSSW) of the Ross Sea and the dense shelf water formed in the Adélie and George V Land (AGVL) region, extensive warming of the AABW cannot be explained by warming of the source waters. A possible cause of warming of the AABW is a decrease in supply of the Ross Sea Bottom Water (RSBW). Hydrographic profiles between the Drygalski Trough of the Western Ross Sea and 150° E were analyzed in the context of a simple advective-diffusive model to assess the causes of the observed changes. The RSBW has also warmed by a larger amount than its source water (the HSSW). The model suggests that the warming of the RSBW observed between the 1970s and 2000s can be explained by a 21 ± 23% reduction in transport of the RSBW and an enhancement of the vertical diffusion of heat as a result of a 30 ± 7% weakening of the abyssal stratification. Freshening of the HSSW reduced the salinity and density stratification between the bottom water layer and overlying ambient water. Hence, freshening of the HSSW both directly freshened and indirectly warmed the RSBW by enhancing the vertical mixing. A simple box model suggest that changes in property and volume transport (decrease of 6.7% is assumed between the year 1995 and 2005) of the RSBW can explain 51 ± 6% of the warming and 84 ± 10% of the freshening observed in the AABW. These facts demonstrate that changes in both property and volume transport of the RSBW have contributed to the warming and freshening of the AABW in the Australian-Antarctic Basin.


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 419-432 ◽  
Author(s):  
K. Shimada ◽  
S. Aoki ◽  
K. I. Ohshima ◽  
S. R. Rintoul

Abstract. Changes to the properties of Antarctic Bottom Water in the Australian-Antarctic Basin (AA-AABW) between the 1990s and 2000s are documented using data from the WOCE Hydrographic Program (WHP) and repeated hydrographic surveys. Strong cooling and freshening are observed on isopycnal layers denser than γn = 28.30 kg m−3. Changes in the average salinity and potential temperature below this isopycnal correspond to a basin-wide warming of 1300 ± 200 GW and freshening of 24 ± 3 Gt year−1. Recent changes to dense shelf water in the source regions in the Ross Sea and George V Land can explain the freshening of AA-AABW but not its extensive warming. An alternative mechanism for this warming is a decrease in the supply of AABW from the Ross Sea (RSBW). Hydrographic profiles between the western Ross Sea and George V Land (171–158° E) were analyzed with a simple advective-diffusive model to assess the causes of the observed changes. The model suggests that the warming of RSBW observed between the 1970s and 2000s can be explained by a 21 ± 23% reduction in RSBW transport and the enhancement of the vertical diffusion of heat resulting from a 30 ± 7% weakening of the abyssal stratification. The documented freshening of Ross Sea dense shelf water leads to a reduction in both salinity and density stratification. Therefore the direct freshening of RSBW at its source also produces an indirect warming of the RSBW. A simple box model suggests that the changes in RSBW properties and volume transport (a decrease of 6.7% is assumed between the year 1995 and 2005) can explain 51 ± 6% of the warming and 84 ± 10% of the freshening observed in AA-AABW.


2015 ◽  
Vol 8 (3) ◽  
pp. 2949-2972 ◽  
Author(s):  
C. Heuzé ◽  
J. K. Ridley ◽  
D. Calvert ◽  
D. P. Stevens ◽  
K. J. Heywood

Abstract. Most CMIP5 models unrealistically form Antarctic Bottom Water by open ocean deep convection in the Weddell and Ross Seas. To identify the triggering mechanisms leading to Southern Ocean deep convection in models, we perform sensitivity experiments on the ocean model NEMO forced by prescribed atmospheric fluxes. We vary the vertical velocity scale of the Langmuir turbulence, the fraction of turbulent kinetic energy transferred below the mixed layer, and the background diffusivity and run short simulations from 1980. All experiments exhibit deep convection in the Riiser-Larsen Sea in 1987; the origin is a positive sea ice anomaly in 1985, causing a shallow anomaly in mixed layer depth, hence anomalously warm surface waters and subsequent polynya opening. Modifying the vertical mixing impacts both the climatological state and the associated surface anomalies. The experiments with enhanced mixing exhibit colder surface waters and reduced deep convection. The experiments with decreased mixing are warmer, open larger polynyas and have deep convection across the Weddell Sea until the simulations end. Extended experiments reveal an increase in the Drake Passage transport of 4 Sv each year deep convection occurs, leading to an unrealistically large transport at the end of the simulation. North Atlantic deep convection is not significantly affected by the changes in mixing parameters. As new climate model overflow parameterisations are developed to form Antarctic Bottom Water more realistically, we argue that models would benefit from stopping Southern Ocean deep convection, for example by increasing their vertical mixing.


2012 ◽  
Vol 25 (17) ◽  
pp. 5830-5844 ◽  
Author(s):  
Sarah G. Purkey ◽  
Gregory C. Johnson

Abstract A statistically significant reduction in Antarctic Bottom Water (AABW) volume is quantified between the 1980s and 2000s within the Southern Ocean and along the bottom-most, southern branches of the meridional overturning circulation (MOC). AABW has warmed globally during that time, contributing roughly 10% of the recent total ocean heat uptake. This warming implies a global-scale contraction of AABW. Rates of change in AABW-related circulation are estimated in most of the world’s deep-ocean basins by finding average rates of volume loss or gain below cold, deep potential temperature (θ) surfaces using all available repeated hydrographic sections. The Southern Ocean is losing water below θ = 0°C at a rate of −8.2 (±2.6) × 106 m3 s−1. This bottom water contraction causes a descent of potential isotherms throughout much of the water column until a near-surface recovery, apparently through a southward surge of Circumpolar Deep Water from the north. To the north, smaller losses of bottom waters are seen along three of the four main northward outflow routes of AABW. Volume and heat budgets below deep, cold θ surfaces within the Brazil and Pacific basins are not in steady state. The observed changes in volume and heat of the coldest waters within these basins could be accounted for by small decreases to the volume transport or small increases to θ of their inflows, or fractional increases in deep mixing. The budget calculations and global contraction pattern are consistent with a global-scale slowdown of the bottom, southern limb of the MOC.


Sign in / Sign up

Export Citation Format

Share Document