scholarly journals The Quasi-Nondispersive Regimes of Long Extratropical Baroclinic Rossby Waves over (Slowly Varying) Topography

2006 ◽  
Vol 36 (1) ◽  
pp. 104-121 ◽  
Author(s):  
Rémi Tailleux

Abstract Actual energy paths of long, extratropical baroclinic Rossby waves in the ocean are difficult to describe simply because they depend on the meridional-wavenumber-to-zonal-wavenumber ratio τ, a quantity that is difficult to estimate both observationally and theoretically. This paper shows, however, that this dependence is actually weak over any interval in which the zonal phase speed varies approximately linearly with τ, in which case the propagation becomes quasi-nondispersive (QND) and describable at leading order in terms of environmental conditions (i.e., topography and stratification) alone. As an example, the purely topographic case is shown to possess three main kinds of QND ray paths. The first is a topographic regime in which the rays follow approximately the contours f /hαc = a constant (αc is a near constant fixed by the strength of the stratification, f is the Coriolis parameter, and h is the ocean depth). The second and third are, respectively, “fast” and “slow” westward regimes little affected by topography and associated with the first and second bottom-pressure-compensated normal modes studied in previous work by Tailleux and McWilliams. Idealized examples show that actual rays can often be reproduced with reasonable accuracy by replacing the actual dispersion relation by its QND approximation. The topographic regime provides an upper bound (in general a large overestimate) of the maximum latitudinal excursions of actual rays. The method presented in this paper is interesting for enabling an optimal classification of purely azimuthally dispersive wave systems into simpler idealized QND wave regimes, which helps to rationalize previous empirical findings that the ray paths of long Rossby waves in the presence of mean flow and topography often seem to be independent of the wavenumber orientation. Two important side results are to establish that the baroclinic string function regime of Tyler and Käse is only valid over a tiny range of the topographic parameter and that long baroclinic Rossby waves propagating over topography do not obey any two-dimensional potential vorticity conservation principle. Given the importance of the latter principle in geophysical fluid dynamics, the lack of it in this case makes the concept of the QND regimes all the more important, for they are probably the only alternative to provide a simple and economical description of general purely azimuthally dispersive wave systems.

2016 ◽  
Vol 29 (20) ◽  
pp. 7547-7557 ◽  
Author(s):  
Jeffrey Shaman ◽  
Eli Tziperman

Abstract Rossby waves are a principal form of atmospheric communication between disparate parts of the climate system. These planetary waves are typically excited by diabatic or orographic forcing and can be subject to considerable downstream modification. Because of differences in wave properties, including vertical structure, phase speed, and group velocity, Rossby waves exhibit a wide range of behaviors. This study demonstrates the combined effects of eastward-propagating stationary barotropic Rossby waves and westward-propagating very-low-zonal-wavenumber stationary barotropic Rossby waves on the atmospheric response to wintertime El Niño convective forcing over the tropical Pacific. Experiments are conducted using the Community Atmosphere Model, version 4.0, in which both diabatic forcing over the Pacific and localized relaxation outside the forcing region are applied. The localized relaxation is used to dampen Rossby wave propagation to either the west or east of the forcing region and isolate the alternate direction signal. The experiments reveal that El Niño forcing produces both eastward- and westward-propagating stationary waves in the upper troposphere. Over North Africa and Asia the aggregate undamped upper-tropospheric response is due to the superposition and interaction of these oppositely directed planetary waves that emanate from the forcing region and encircle the planet.


2018 ◽  
Vol 846 ◽  
pp. 815-833 ◽  
Author(s):  
Chen Wang ◽  
Neil J. Balmforth

Strato-rotational instability (SRI) is normally interpreted as the resonant interactions between normal modes of the internal or Kelvin variety in three-dimensional settings in which the stratification and rotation are orthogonal to both the background flow and its shear. Using a combination of asymptotic analysis and numerical solution of the linear eigenvalue problem for plane Couette flow, it is shown that such resonant interactions can be destroyed by certain singular critical levels. These levels are not classical critical levels, where the phase speed $c$ of a normal mode matches the mean flow speed $U$, but are a different type of singularity where $(c-U)$ matches a characteristic gravity-wave speed $\pm N/k$, based on the buoyancy frequency $N$ and streamwise horizontal wavenumber $k$. Instead, it is shown that a variant of SRI can occur due to the coupling of a Kelvin or internal wave to such ‘baroclinic’ critical levels. Two characteristic situations are identified and explored, and the conservation law for pseudo-momentum is used to rationalize the physical mechanism of instability. The critical level coupling removes the requirement for resonance near specific wavenumbers $k$, resulting in an extensive continuous band of unstable modes.


2006 ◽  
Vol 63 (2) ◽  
pp. 565-581 ◽  
Author(s):  
Steven B. Feldstein

Abstract The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. The primary methodology involves the regression of relevant variables including the equatorial bulge, mountain, and friction torques, surface pressure, streamfunction, and outgoing longwave radiation, against the time derivative of the two components and the amplitude of the EAAM vector. The results indicate that the observed 10-day westward rotation of the EAAM vector corresponds to the propagation of a zonal wavenumber-1, antisymmetric, Rossby wave normal mode. Additional findings suggest that fluctuations in the amplitude of the EAAM vector are driven by poleward-propagating Rossby waves excited by the latent heating within equatorial mixed Rossby–gravity waves and also by wave–wave interaction among planetary waves. Both of these processes can induce surface pressure anomalies that amplify the EAAM vector via the equatorial bulge torque. The Antarctic and Greenland mountain torques were found to drive large fluctuations in the amplitude of the EAAM vector. Both the friction torque and wave–zonal-mean flow interaction were shown to dampen the EAAM amplitude fluctuations. A comparison of the EAAM dynamics in the atmosphere with that in an aquaplanet GCM suggests that the mountain torque also drives fluctuations in the phase speed of the atmospheric wave field associated with the EAAM vector, and it confines the wave–wave interaction to planetary scales.


2013 ◽  
Vol 726 ◽  
pp. 123-136 ◽  
Author(s):  
Nathan Paldor ◽  
Yair De-Leon ◽  
Ofer Shamir

AbstractThe construction of approximate Schrödinger eigenvalue equations for planetary (Rossby) waves and for inertia–gravity (Poincaré) waves on an ocean-covered rotating sphere yields highly accurate estimates of the phase speeds and meridional variation of these waves. The results are applicable to fast rotating spheres such as Earth where the speed of barotropic gravity waves is smaller than twice the tangential speed on the equator of the rotating sphere. The implication of these new results is that the phase speed of Rossby waves in a barotropic ocean that covers an Earth-like planet is independent of the speed of gravity waves for sufficiently large zonal wavenumber and (meridional) mode number. For Poincaré waves our results demonstrate that the dispersion relation is linear, (so the waves are non-dispersive and the phase speed is independent of the wavenumber), except when the zonal wavenumber and the (meridional) mode number are both near 1.


2005 ◽  
Vol 35 (5) ◽  
pp. 865-879 ◽  
Author(s):  
A. Colin de Verdière ◽  
R. Tailleux

Abstract The effect of a baroclinic mean flow on long oceanic Rossby waves is studied using a combination of analytical and numerical solutions of the eigenvalue problem. The effect is summarized by the value of the nondimensional numberwhen the mean flow shear keeps a constant sign throughout the water column. Because previous studies have shown that no interaction occurs if the mean flow has the shape of the first unperturbed mode (the non–Doppler shift effect), an implicit assumption in the application of the present work to the real ocean is that the relative projections of the mean flow on the second and higher modes remain approximately constant. Because R2 is large at low latitudes between 10° and 30° (the southern branches of subtropical gyres or the regions of surface westward shear), the phase speed of the first mode is very slightly decreased from the no mean flow standard theory case. Between 30° and 40° latitudes (the northern branches of the subtropical gyres or the regions of surface eastward shear), R2 is O(10) and the westward phase speed can increase significantly (up to a factor of 2). At still higher latitudes when R2 is O(1) a critical transition occurs below which no discrete Rossby waves are found that might explain the absence of observations of zonal propagations at latitudes higher than 50°. Our case studies, chosen to represent the top-trapped and constant-sign shear profiles of observed mean flows, all show the importance of three main effects on the value of the first baroclinic mode Rossby wave speed: 1) the meridional gradient of the quantity N2/f (where N is the buoyancy frequency) rather than that of the potential vorticity fN2; 2) the curvature of the mean flow in the vertical direction, which appears particularly important to predict the sign of the phase speed correction to the no-mean-flow standard theory case: increase (decrease) of the westward phase speed when the surface-intensified mean flow is eastward (westward); and 3) a weighted vertical average of the mean flow velocity, acting as a Doppler-shift term, which is small in general but important to determine the precise value of the phase speed.


2020 ◽  
Author(s):  
Imogen Dell

<p>There exists a coupling mechanism between the troposphere and the stratosphere, which plays a fundamental role in weather and climate. The coupling is highly complex and rests upon radiative and chemical feedbacks, as well as dynamical coupling by Rossby waves. The troposphere acts as a source of Rossby waves which propagate upwards in to the stratosphere, affecting the zonal mean flow. Rossby waves are also likely to play a significant role in downward communication of information via reflection from the stratosphere in to the troposphere. A mechanism for this reflection could be from a so-called critical layer. A shear flow exhibits a critical layer where the phase speed equals the flow velocity, where viscous and nonlinear effects become important. A wave incident upon a critical layer may be absorbed, reflected or overreflected, whereby the amplitude of the reflected wave is larger than that of the incident wave. In the case of troposphere-stratosphere coupling, the concept of critical layer overreflection is key to understanding atmospheric instability.</p><p>Motivated by this, a mathematical framework for understanding the coupling will be presented together with an investigation in to the role of nonlinearity versus viscosity inside the critical layer.</p>


2021 ◽  
Author(s):  
Yair De-Leon ◽  
Chaim I. Garfinkel ◽  
Nathan Paldor

<p>A linear wave theory of the Rotating Shallow Water Equations (RSWE) is developed in a channel on either the mid-latitude f-plane/β-plane or on the equatorial β-plane in the presence of a uniform mean zonal flow that is balanced geostrophically by a meridional gradient of the fluid surface height. We show that this surface height gradient is a potential vorticity (PV) source that generates Rossby waves even on the f-plane similar to the generation of these waves by PV sources such as the β–effect, shear of the mean flow and bottom topography. Numerical solutions of the RSWE show that the resulting planetary (Rossby), Inertia-Gravity (Poincaré) and Kelvin-like waves differ from their counterparts without mean flow in both their phase speeds and meridional structures. Doppler shifting of the “no mean-flow” phase speeds does not account for the difference in phase speeds, and the meridional structure does not often oscillate across the channel but is trapped near one the channel's boundaries in mid latitudes or behaves as Hermite function in the case of an equatorial channel. The phase speed of Kelvin-like waves is modified by the presence of a mean flow compared to the classical gravity wave speed but their meridional velocity does not vanish. The gaps between the dispersion curves of adjacent Poincaré modes are not uniform but change with the zonal wavenumber, and the convexity of the dispersion curves also changes with the zonal wavenumber. In some cases, the Kelvin-like dispersion curve crosses those of Poincaré modes, but it is not an evidence for the existence of instability since the Kelvin waves are not part of the solutions of an eigenvalue problem. </p>


1979 ◽  
Vol 94 (1) ◽  
pp. 39-64 ◽  
Author(s):  
Alain Colin De Verdiere

This paper makes use of the ease of modelling topographic Rossby waves in a laboratory context to investigate the ability of these waves to generate strong zonal mean flows when the geostrophic (f/H) contours are closed. A zonally travelling wave is forced in a narrow latitude band of a ‘polar beta plane’. Stronger signals occur when the motion of the driving is retrograde and at the phase speed of the gravest free modes. An important zonal westward mean flow occurs in the free interior while a compensating eastward jet is found at forced latitudes. The dependence of the mean flow strength upon the wave steepness indicates that genuine rectification processes are indeed taking place when the fluid is stirred by purely oscillating devices.This general tendency for topographic Rossby waves to transfer energy to zonal components is first analysed theoretically by investigating a side-band instability mechanism within an unforced fluid. Among the products of the interactions between a primary wave of wavenumberkand its side bands of wavenumberk± δk, the zonal flow is prominent. Wave steepnesses of order (|δk|/|k|)½only are required for zonal energy to grow whereas non-zonal components of scale longer or shorter than the primary wave need huge steepnesses [of order (|δk|/|k|−3/2] for amplification. This supplements the earlier notion that ‘nearly zonal’ waves may be generated by weak resonant interaction.For gentle driving certain classical aspects of Rossby wave propagation can be checked against the experiments. The linear theory provides also a convenient framework to discuss the meridional structure of the wave-induced Reynolds stress. For more energetic driving, a test of the potential vorticity mixing theory can be carried out and sheds further light upon the rectification mechanisms.


2008 ◽  
Vol 605 ◽  
pp. 115-143 ◽  
Author(s):  
STEPHEN D. GRIFFITHS

The instability of a rotating, stratified flow with arbitrary horizontal cross-stream shear is studied, in the context of linear normal modes with along-stream wavenumber k and vertical wavenumber m. A class of solutions are developed which are highly localized in the horizontal cross-stream direction around a particular streamline. A Rayleigh–Schrödinger perturbation analysis is performed, yielding asymptotic series for the frequency and structure of these solutions in terms of k and m. The accuracy of the approximation improves as the vertical wavenumber increases, and typically also as the along-stream wavenumber decreases. This is shown to correspond to a near-inertial limit, in which the solutions are localized around the global minimum of fQ, where f is the Coriolis parameter and Q is the vertical component of the absolute vorticity. The limiting solutions are near-inertial waves or inertial instabilities, according to whether the minimum value of fQ is positive or negative.We focus on the latter case, and investigate how the growth rate and structure of the solutions changes with m and k. Moving away from the inertial limit, we show that the growth rate always decreases, as the inertial balance is broken by a stabilizing cross-stream pressure gradient. We argue that these solutions should be described as non-symmetric inertial instabilities, even though their spatial structure is quite different to that of the symmetric inertial instabilities obtained when k is equal to zero.We use the analytical results to predict the growth rates and phase speeds for the inertial instability of some simple shear flows. By comparing with results obtained numerically, it is shown that accurate predictions are obtained by using the first two or three terms of the perturbation expansion, even for relatively small values of the vertical wavenumber. Limiting expressions for the growth rate and phase speed are given explicitly for non-zero k, for both a hyperbolic-tangent velocity profile on an f-plane, and a uniform shear flow on an equatorial β-plane.


2007 ◽  
Vol 37 (5) ◽  
pp. 1192-1214 ◽  
Author(s):  
Riccardo Farneti

Abstract Rossby wave propagation is investigated in the framework of an idealized middle-latitude quasigeostrophic coupled ocean–atmosphere model. The Rossby waves are observed to propagate faster than both the classical linear theory (unperturbed solution) and the phase speed estimates when the effect of the zonal mean flow is added (perturbed solution). Moreover, using statistical eigentechniques, a clear coupled Rossby wave mode is identified between a baroclinic oceanic Rossby wave and an equivalent barotropic atmospheric wave. The spatial phase relationship of the coupled wave is similar to the one predicted by Goodman and Marshall, suggesting a positive ocean–atmosphere feedback. It is argued that oceanic Rossby waves can be efficiently coupled to the overlying atmosphere and that the atmospheric coupling is capable of adding an extra speedup to the wave; in fact, when the ocean is simply forced, the Rossby wave propagation speed approaches the perturbed solution.


Sign in / Sign up

Export Citation Format

Share Document