scholarly journals The Superposition of Eastward and Westward Rossby Waves in Response to Localized Forcing

2016 ◽  
Vol 29 (20) ◽  
pp. 7547-7557 ◽  
Author(s):  
Jeffrey Shaman ◽  
Eli Tziperman

Abstract Rossby waves are a principal form of atmospheric communication between disparate parts of the climate system. These planetary waves are typically excited by diabatic or orographic forcing and can be subject to considerable downstream modification. Because of differences in wave properties, including vertical structure, phase speed, and group velocity, Rossby waves exhibit a wide range of behaviors. This study demonstrates the combined effects of eastward-propagating stationary barotropic Rossby waves and westward-propagating very-low-zonal-wavenumber stationary barotropic Rossby waves on the atmospheric response to wintertime El Niño convective forcing over the tropical Pacific. Experiments are conducted using the Community Atmosphere Model, version 4.0, in which both diabatic forcing over the Pacific and localized relaxation outside the forcing region are applied. The localized relaxation is used to dampen Rossby wave propagation to either the west or east of the forcing region and isolate the alternate direction signal. The experiments reveal that El Niño forcing produces both eastward- and westward-propagating stationary waves in the upper troposphere. Over North Africa and Asia the aggregate undamped upper-tropospheric response is due to the superposition and interaction of these oppositely directed planetary waves that emanate from the forcing region and encircle the planet.

2018 ◽  
Vol 76 (4) ◽  
pp. 1122-1130 ◽  
Author(s):  
Lotta Clara Kluger ◽  
Sophia Kochalski ◽  
Arturo Aguirre-Velarde ◽  
Ivonne Vivar ◽  
Matthias Wolff

Abstract In February and March 2017, a coastal El Niño caused extraordinary heavy rains and a rise in water temperatures along the coast of northern Peru. In this work, we document the impacts of this phenomenon on the artisanal fisheries and the scallop aquaculture sector, both of which represent important socio-economic activities for the province of Sechura. Despite the perceived absence of effective disaster management and rehabilitation policies, resource users opted for a wide range of different adaptation strategies and are currently striving towards recovery. One year after the event, the artisanal fisheries fleet has returned to operating almost on a normal scale, while the aquaculture sector is still drastically impacted, with many people continuing to work in different economic sectors and even in other regions of the country. Recovery of the social-ecological system of Sechura likely depends on the occurrence of scallop seed and the financial capacity of small-scale producers to reinitiate scallop cultures. Long-term consequences of this coastal El Niño are yet to be studied, though the need to develop trans-local and trans-sectoral management strategies for coping with disturbance events of this scale is emphasized.


2005 ◽  
Vol 9 (25) ◽  
pp. 1-16
Author(s):  
Miles G. Logsdon ◽  
Robin Weeks ◽  
Milton Smith ◽  
Jeffery E. Richey ◽  
Victoria Ballester ◽  
...  

Abstract In the Amazon basin, seasonal and interannual spectral changes measured by satellites result from anthropogenic disturbance and from the interaction between climate variation and the surface cover. Measurements of spectral change, and the characterization of that change, provide information concerning the physical processes evident at this mesoscale. A 17-yr sequence of daily Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) images were analyzed to produce a monthly record of surface spectral change encompassing El Niño–Southern Oscillation (ENSO) cycles. Monthly cloud-free composite images from daily AVHRR data were produced by linear filters that minimized the finescale spatial variance and allowed for a wide range analysis within a consistent mathematical framework. Here the use of a minimized local variance (MLV) filter that produced spatially smooth images in which major land-cover boundaries and spatial gradients are clearly represented is discussed. Changes in the configuration of these boundaries and the composition of the landscape elements they defined are described in terms of quantitative changes in landscape pattern. The time series produced with the MLV filter revealed a marked seasonal difference in the pattern of the landscape and structural differences over the length of the time series. Strikingly, the response of the region to drier El Niño years appears to be delayed in the MLV series, the maximum response being in the year following El Niño with little or no change seen during El Niño.


2019 ◽  
Vol 76 (12) ◽  
pp. 3893-3917 ◽  
Author(s):  
Yoshio Kawatani ◽  
Kevin Hamilton ◽  
Kaoru Sato ◽  
Timothy J. Dunkerton ◽  
Shingo Watanabe ◽  
...  

Abstract Observational studies have shown that, on average, the quasi-biennial oscillation (QBO) exhibits a faster phase progression and shorter period during El Niño than during La Niña. Here, the possible mechanism of QBO modulation associated with ENSO is investigated using the MIROC-AGCM with T106 (~1.125°) horizontal resolution. The MIROC-AGCM simulates QBO-like oscillations without any nonorographic gravity wave parameterizations. A 100-yr integration was conducted during which annually repeating sea surface temperatures based on the composite observed El Niño conditions were imposed. A similar 100-yr La Niña integration was also conducted. The MIROC-AGCM simulates realistic differences between El Niño and La Niña, notably shorter QBO periods, a weaker Walker circulation, and more equatorial precipitation during El Niño than during La Niña. Near the equator, vertical wave fluxes of zonal momentum in the uppermost troposphere are larger and the stratospheric QBO forcing due to interaction of the mean flow with resolved gravity waves (particularly for zonal wavenumber ≥43) is much larger during El Niño. The tropical upwelling associated with the Brewer–Dobson circulation is also stronger in the El Niño simulation. The effects of the enhanced tropical upwelling during El Niño are evidently overcome by enhanced wave driving, resulting in the shorter QBO period. The integrations were repeated with another model version (MIROC-ECM with T42 horizontal resolution) that employs a parameterization of nonorographic gravity waves in order to simulate a QBO. In the MIROC-ECM the average QBO periods are nearly identical in the El Niño and La Niña simulations.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Daria Gushchina ◽  
Boris Dewitte

AbstractThe intraseasonal tropical variability (ITV) patterns in the tropical troposphere are documented using double space-time Fourier analysis. Madden and Julian oscillations (MJO) as well as equatorial coupled waves (Kelvin and Rossby) are investigated based on the NCEP/NCAR Reanalysis data for the 1977–2006 period and the outputs of an intermediate ocean-atmosphere coupled model named LODCA-OTCM. A strong seasonal dependence of the ITV/ENSO relationship is evidenced. The leading relationship for equatorial Rossby waves (with the correlation of the same order than for the MJO) is documented; namely, it is shown that intensification of Rossby waves in the central Pacific during boreal summer precedes by half a year the peak of El Niño. The fact that MJO activity in spring-summer is associated to the strength of subsequent El Niño is confirmed. It is shown that LODCA-QTCM is capable of simulating the convectively coupled equatorial waves in outgoing long wave radiation and zonal wind at 850 hPa fields with skill comparable to other Coupled General Circulation Models. The ITV/ENSO relationship is modulated at low frequency. In particular the periods of low ENSO amplitude are associated with weaker MJO activity and a cancellation of MJO at the ENSO development phase. In opposition, during the decaying phase, MJO signal is strong. The periods of strong ENSO activity are associated with a marked coupling between MJO, Kelvin and equatorially Rossby waves and ENSO; the precursor signal of MJO (Rossby waves) in the western (central) Pacific is obvious. The results provide material for the observed change in ENSO characteristics in recent years and question whether the characteristics of the ITV/ENSO relationship may be sensitive to the observed warming in the central tropical Pacific.


2014 ◽  
Vol 119 (8) ◽  
pp. 5105-5122 ◽  
Author(s):  
Soumi Chakravorty ◽  
C. Gnanaseelan ◽  
J. S. Chowdary ◽  
Jing-Jia Luo

2020 ◽  
Vol 50 (11) ◽  
pp. 3353-3373
Author(s):  
Yilong Lyu ◽  
Yuanlong Li ◽  
Jianing Wang ◽  
Jing Duan ◽  
Xiaohui Tang ◽  
...  

AbstractMooring measurements at ~140°E in the western equatorial Pacific Ocean documented greatly intensified eastward subsurface currents, which largely represent the nascent Equatorial Undercurrent, to ~67 cm s−1 in boreal summer of 2016. The eastward currents occupied the entire upper 500 m while the westward surface currents nearly disappeared. Historical in situ data observed similar variations after most El Niño events. Further analysis combining satellite and reanalysis data reveals that the eastward currents observed at ~140°E are a component of an anomalous counterclockwise circulation straddling the equator, with westward current anomalies retroflecting near the western boundary and feeding southeastward current anomalies along the New Guinea coast. A 1.5-layer reduced-gravity ocean model is able to crudely reproduce these variations, and a hierarchy of sensitivity experiments is performed to understand the underlying dynamics. The anomalous circulation is largely the delayed ocean response to equatorial wind anomalies over the central-to-eastern Pacific basin emerging in the mature stage of El Niño. Downwelling Rossby waves are generated by the reflection of equatorial Kelvin waves and easterly winds in the eastern Pacific. Upon reaching the western Pacific, the southern lobes of Rossby waves encounter the slanted New Guinea island and deflect to the equator, establishing a local sea surface height maximum and leading to the detour of westward currents flowing from the Pacific interior. Additional experiments with edited western boundary geometry confirm the importance of topography in regulating the structure of this cross-equatorial anomalous circulation.


2018 ◽  
Vol 31 (11) ◽  
pp. 4563-4584 ◽  
Author(s):  
Bernat Jiménez-Esteve ◽  
Daniela I. V. Domeisen

Abstract El Niño–Southern Oscillation (ENSO) exerts an influence on the North Atlantic–European (NAE) region. However, this teleconnection is nonlinear and nonstationary owing to the superposition and interaction of a multitude of influences on this region. The stratosphere is one of the major players in terms of the influence of the ENSO signal on this sector. Nevertheless, there are tropospheric dynamical links between the North Pacific and the North Atlantic that are clearly influenced by ENSO. This tropospheric pathway of ENSO to the NAE has received less attention. In view of this, the present study revisits the tropospheric pathway of ENSO to the North Atlantic using ECMWF reanalysis products. Anomalous propagation of transient and quasi-stationary waves across North America is analyzed with respect to their sensitivity to ENSO. Transient (quasi-stationary zonal waves 1–3) wave activity flux (WAF) from the Pacific to the Atlantic increases during El Niño (La Niña) conditions leading to a negative (positive) phase of the North Atlantic Oscillation (NAO). This response is observed from January to March for El Niño and only visible during February for La Niña events. However, the stratosphere strongly modulates this response. For El Niño (La Niña) conditions a weaker (stronger) stratospheric vortex tends to reinforce the negative (positive) NAO with the stratosphere and troposphere working in tandem, contributing to a stronger and more persistent tropospheric circulation response. These findings may have consequences for the prediction of the NAO during times with an inactive stratosphere.


2009 ◽  
Vol 9 (4) ◽  
pp. 14601-14643
Author(s):  
S. P. Alexander ◽  
M. G. Shepherd

Abstract. Temperature data from the COSMIC GPS-RO satellite constellation are used to study planetary wave activity in both polar stratospheres from September 2006 until November 2008. One major and several minor sudden stratospheric warmings (SSWs) were recorded during the boreal winters of 2006/2007 and 2007/2008. Planetary wave morphology is studied using space-time spectral analysis while individual waves are extracted using a linear least squares fitting technique. Results show the planetary wave frequency and zonal wavenumber distribution varying between hemisphere and altitude. Most of the large Northern Hemisphere wave activity is associated with the winter SSWs, while the largest amplitude waves in the Southern Hemisphere occur during spring. Planetary wave activity during the 2006/2007 and 2007/2008 Arctic SSWs is due largely to travelling waves with zonal wavenumbers |s|=1 and |s|=2 having periods of 12, 16 and 23 days and stationary waves with |s|=1 and |s|=2. The latitudinal variation of wave amplification during the two Northern Hemisphere winters is studied. Most planetary waves show different structure and behaviour during each winter. Abrupt changes in the latitude of maximum amplitude of some planetary waves is observed co-incident in time with some of the SSWs.


2021 ◽  
pp. 1-41
Author(s):  
Tianyi Wang ◽  
Tim Li

AbstractThe diversity of the Madden-Julian Oscillation (MJO) in terms of its maximum intensity, zonal extent and phase speed was explored using a cluster analysis method. The zonal extent is found to be significantly correlated to the phase speed. A longer zonal extent is often associated with a faster phase speed.The diversities of zonal extent and speed are connected with distinctive interannual sea surface temperature anomaly (SSTA) distributions and associated moisture and circulation patterns over the equatorial Pacific. An El Niño–like background SSTA leads to enhanced precipitation over the central Pacific, allowing a stronger vertically overturning circulation to the east of the MJO. This promotes both a larger east-west asymmetry of column-integrated moist static energy (MSE) tendency and a greater boundary-layer moisture leading, serving as potential causes of the faster phase speed. The El Niño–like SSTA also favors the MJOs intruding further into the Pacific, causing a larger zonal extent.The intensity diversity is associated with the interannual SSTA over the Maritime Continent and background moisture condition over the tropical Indian Ocean. An observed warm SSTA over the Maritime Continent excites a local Walker cell with a subsidence over the Indian Ocean, which could decrease the background moisture, weakening the MJO intensity. The intensity difference between strong and weak events would be amplified due to distinct intensity growth speed. The faster intensity growth of a strong MJO is attributed to a greater longwave radiative heating and a greater surface latent heat flux, as both of which contribute to a greater total time change rate of the column-integrated MSE.


Sign in / Sign up

Export Citation Format

Share Document