Oceanic Isopycnal Slope Spectra. Part I: Internal Waves

2007 ◽  
Vol 37 (5) ◽  
pp. 1215-1231 ◽  
Author(s):  
Jody M. Klymak ◽  
James N. Moum

Abstract Horizontal tow measurements of internal waves are rare and have been largely supplanted in recent decades by vertical profile measurements. Here, estimates of isotherm displacements and turbulence dissipation rate from a towed vehicle deployed near Hawaii are presented. The displacement data are interpreted in terms of horizontal wavenumber spectra of isopycnal slope. The spectra span scales from 5 km to 0.1 m, encompassing both internal waves and turbulence. The turbulence subrange is identified using a standard turbulence fit, and the rest of the motions are deemed to be internal waves. The remaining subrange has a slightly red slope (ϕ ∼ k−1/2x) and vertical coherences compatible with internal waves, in agreement with previous towed measurements. However, spectral amplitudes in the internal wave subrange exhibit surprisingly little variation despite a four-order-of-magnitude change in turbulence dissipation rate observed at the site. The shape and amplitude of the horizontal spectra are shown to be consistent with observations and models of vertical internal wave spectra that consist of two subranges: a “linear” subrange (ϕ ∼ k0z) and a red “saturated” subrange (ϕ ∼ k−1z). These two subranges are blurred in the transformation to horizontal spectra, yielding slopes close to those observed. The saturated subrange does not admit amplitude variations in the spectra yet is an important component of the measured horizontal spectra, explaining the poor correspondence with the dissipation rate.

2007 ◽  
Vol 37 (5) ◽  
pp. 1232-1245 ◽  
Author(s):  
Jody M. Klymak ◽  
James N. Moum

Abstract Isopycnal slope spectra were computed from thermistor data obtained using a microstructure platform towed through turbulence generated by internal tidal motions near the Hawaiian Ridge. The spectra were compared with turbulence dissipation rates ɛ that are estimated using shear probes. The turbulence subrange of isopycnal slope spectra extends to surprisingly large horizontal wavelengths (>100 m). A four-order-of-magnitude range in turbulence dissipation rates at this site reveals that isopycnal slope spectra ∝ ɛ2/3k1/3x. The turbulence spectral subrange (kx > 0.4 cpm) responds to the dissipation rate as predicted by the Batchelor model spectrum, both in amplitude and towed vertical coherence. Scales between 100 and 1000 m are modeled by a linear combination of internal waves and turbulence while at larger scales internal waves dominate. The broad bandwidth of the turbulence subrange means that a fit of spectral amplitude to the Batchelor model yields reasonable estimates of ɛ, even when applied at scales of tens of meters that in vertical profiles would be obscured by other fine structure.


2016 ◽  
Vol 46 (7) ◽  
pp. 1989-2003 ◽  
Author(s):  
Bruno Ferron ◽  
Florian Kokoszka ◽  
Herlé Mercier ◽  
Pascale Lherminier ◽  
Thierry Huck ◽  
...  

AbstractThe variability of the turbulent kinetic energy dissipation due to internal waves is quantified using a finescale parameterization applied to the A25 Greenland–Portugal transect repeated every two years from 2002 to 2012. The internal wave velocity shear and strain are estimated for each cruise at 91 stations from full depth vertical profiles of density and velocity. The 2002–12 averaged dissipation rate 〈ε2002–2012〉 in the upper ocean lays in the range 1–10 × 10−10 W kg−1. At depth, 〈ε2002–2012〉 is smaller than 1 × 10−10 W kg−1 except over rough topography found at the continental slopes, the Reykjanes Ridge, and in a region delimited by the Azores–Biscay Rise and Eriador Seamount. There, the vertical energy flux of internal waves is preferentially oriented toward the surface and 〈ε2002–2012〉 is in the range 1–20 × 10−10 W kg−1. The interannual variability in the dissipation rates is remarkably small over the whole transect. A few strong dissipation rate events exceeding the uncertainty of the finescale parameterization occur at depth between the Azores–Biscay Rise and Eriador Seamount. This region is also marked by mesoscale eddying flows resulting in enhanced surface energy level and enhanced bottom velocities. Estimates of the vertical energy fluxes into the internal tide and into topographic internal waves suggest that the latter are responsible for the strong dissipation events. At Eriador Seamount, both topographic internal waves and the internal tide contribute with the same order of magnitude to the dissipation rate while around the Reykjanes Ridge the internal tide provides the bulk of the dissipation rate.


2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


1983 ◽  
Vol 18 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mark K. Watson ◽  
R.R. Hudgins ◽  
P.L. Silveston

Abstract Internal wave motion was studied in a laboratory rectangular, primary clarifier. A photo-extinction device was used as a turbidimeter to measure concentration fluctuations in a small volume within the clarifier as a function of time. The signal from this device was fed to a HP21MX minicomputer and the power spectrum plotted from data records lasting approximately 30 min. Results show large changes of wave amplitude as frequency increases. Two distinct regions occur: one with high amplitudes at frequencies below 0.03 Hz, the second with very small amplitudes appears for frequencies greater than 0.1 Hz. The former is associated with internal waves, the latter with flow-generated turbulence. Depth, velocity in the clarifier and inlet suspended solids influence wave amplitudes and the spectra. A variation with position or orientation of the probe was not detected. Contradictory results were found for the influence of flow contraction baffles on internal wave amplitude.


2019 ◽  
Vol 880 ◽  
pp. 743-763 ◽  
Author(s):  
Géraldine Davis ◽  
Thierry Dauxois ◽  
Timothée Jamin ◽  
Sylvain Joubaud

The current paper presents an experimental study of the energy budget of a two-dimensional internal wave attractor in a trapezoidal domain filled with uniformly stratified fluid. The injected energy flux and the dissipation rate are simultaneously measured from a two-dimensional, two-component, experimental velocity field. The pressure perturbation field needed to quantify the injected energy is determined from the linear inviscid theory. The dissipation rate in the bulk of the domain is directly computed from the measurements, while the energy sink occurring in the boundary layers is estimated using the theoretical expression for the velocity field in the boundary layers, derived recently by Beckebanze et al. (J. Fluid Mech., vol. 841, 2018, pp. 614–635). In the linear regime, we show that the energy budget is closed, in the steady state and also in the transient regime, by taking into account the bulk dissipation and, more importantly, the dissipation in the boundary layers, without any adjustable parameters. The dependence of the different sources on the thickness of the experimental set-up is also discussed. In the nonlinear regime, the analysis is extended by estimating the dissipation due to the secondary waves generated by triadic resonant instabilities, showing the importance of the energy transfer from large scales to small scales. The method tested here on internal wave attractors can be generalized straightforwardly to any quasi-two-dimensional stratified flow.


2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


1976 ◽  
Vol 78 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Michael Milder

The scaled vorticity Ω/N and strain ∇ ζ associated with internal waves in a weak density gradient of arbitrary depth dependence together comprise a quantity that is conserved in the usual linearized approximation. This quantity I is the volume integral of the dimensionless density DI = ½[Ω2/N2 + (∇ ζ)2]. For progressive waves the ‘kinetic’ and ‘potential’ parts are equal, and in the short-wavelength limit the density DI and flux FI are related by the ordinary group velocity: FI = DIcg. The properties of DI suggest that it may be a useful measure of local internal-wave saturation.


Sign in / Sign up

Export Citation Format

Share Document