scholarly journals Improved Passive Microwave Retrievals of Rain Rate over Land and Ocean. Part II: Validation and Intercomparison

2013 ◽  
Vol 30 (11) ◽  
pp. 2509-2526 ◽  
Author(s):  
Grant W. Petty ◽  
Ke Li

Abstract A new passive microwave rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) that relies on an a priori database derived from matchups between TMI brightness temperatures and precipitation radar (PR)-derived surface rain rates has been developed. In addition to implementing a fairly conventional Bayesian approach to precipitation estimation, it exploits a dimensional reduction technique designed to increase the effective sample density in the database and also to improve the detectability of precipitation over problem surface types. The details of the algorithm itself are described in a companion paper. In this paper, the algorithm is validated against independent PR–TMI matchups from calendar year 2002. The validation results are benchmarked against results obtained for the same scenes from the current standard (version 7) 2A12 rainfall product for TRMM. Validation statistics considered include the biases, correlation coefficients, and root-mean-square (RMS) differences for annual precipitation totals on a 1° grid as well as two-threshold Heidke skill scores (HSS) for instantaneous (pixel level) retrievals, determined separately for each of seven surface classes, including ocean, coast, and five other basic land surface types as well as for cold (<275 K) and warm surface skin temperatures. Overall, the University of Wisconsin (UW) algorithm exhibits markedly reduced RMS error and bias in the annual total rainfall and markedly improved instantaneous skill at delineating light rain rates, especially over land and the coast. To ensure that the improved results were not due to both the training and validation data having been taken from the same calendar year, the validation of the UW algorithm is repeated using 2005 matchup data.

2013 ◽  
Vol 30 (11) ◽  
pp. 2493-2508 ◽  
Author(s):  
Grant W. Petty ◽  
Ke Li

Abstract A new approach to passive microwave retrievals of precipitation is described that relies on an objective dimensional reduction procedure to filter, normalize, and decorrelate geophysical background noise while retaining the majority of radiometric information concerning precipitation. The dimensional reduction also sharply increases the effective density of any a priori database used in a Bayesian retrieval scheme. The method is applied to passive microwave data from the Tropical Rainfall Measuring Mission (TRMM), reducing the original nine channels to three “pseudochannels” that are relatively insensitive to most background variations occurring within each of seven surface classes (one ocean plus six land and coast) for which they are defined. These pseudochannels may be used in any retrieval algorithm, including the current standard Goddard profiling algorithm (GPROF), in place of the original channels. The same methods are also under development for the Global Precipitation Measurement (GPM) Core Observatory Microwave Imager (GMI). Starting with the pseudochannel definitions, a new Bayesian algorithm for retrieving the surface rain rate is described. The algorithm uses an a priori database populated with matchups between the TRMM precipitation radar (PR) and the TRMM Microwave Imager (TMI). The explicit goal of the algorithm is to retrieve the PR-derived best estimate of the surface rain rate in portions of the TMI swath not covered by the PR. A unique feature of the new algorithm is that it provides robust posterior Bayesian probabilities of pixel-averaged rain rate exceeding various thresholds. Validation and intercomparison of the new algorithm is the subject of a companion paper.


2018 ◽  
Vol 10 (11) ◽  
pp. 1743 ◽  
Author(s):  
Lia Martins Costa do Amaral ◽  
Stefano Barbieri ◽  
Daniel Vila ◽  
Silvia Puca ◽  
Gianfranco Vulpiani ◽  
...  

The uncertainties associated with rainfall estimates comprise various measurement scales: from rain gauges and ground-based radars to the satellite rainfall retrievals. The quality of satellite rainfall products has improved significantly in recent decades; however, such algorithms require validation studies using observational rainfall data. For this reason, this study aims to apply the H-SAF consolidated radar data processing to the X-band radar used in the CHUVA campaigns and apply the well established H-SAF validation procedure to these data and verify the quality of EUMETSAT H-SAF operational passive microwave precipitation products in two regions of Brazil (Vale do Paraíba and Manaus). These products are based on two rainfall retrieval algorithms: the physically based Bayesian Cloud Dynamics and Radiation Database (CDRD algorithm) for SSMI/S sensors and the Passive microwave Neural network Precipitation Retrieval algorithm (PNPR) for cross-track scanning radiometers (AMSU-A/AMSU-B/MHS sensors) and for the ATMS sensor. These algorithms, optimized for Europe, Africa and the Southern Atlantic region, provide estimates for the MSG full disk area. Firstly, the radar data was treated with an overall quality index which includes corrections for different error sources like ground clutter, range distance, rain-induced attenuation, among others. Different polarimetric and non-polarimetric QPE algorithms have been tested and the Vulpiani algorithm (hereafter, R q 2 V u 15 ) presents the best precipitation retrievals when compared with independent rain gauges. Regarding the results from satellite-based algorithms, generally, all rainfall retrievals tend to detect a larger precipitation area than the ground-based radar and overestimate intense rain rates for the Manaus region. Such behavior is related to the fact that the environmental and meteorological conditions of the Amazon region are not well represented in the algorithms. Differently, for the Vale do Paraíba region, the precipitation patterns were well detected and the estimates are in accordance with the reference as indicated by the low mean bias values.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fang-Cheng Zhou ◽  
Xiaoning Song ◽  
Pei Leng ◽  
Hua Wu ◽  
Bo-Hui Tang

Precipitable water vapor (PWV) is one of the most variable components of the atmosphere in both space and time. In this study, a passive microwave-based retrieval algorithm for PWV over land without land surface temperature (LST) data was developed. To build the algorithm, two assumptions exist: (1) land surface emissivities (LSE) at two adjacent frequencies are equal and (2) there are simple parameterizations that relate transmittance, atmospheric effective radiating temperature, and PWV. Error analyses were performed using radiosonde sounding observations from Zhangye, China, and CE318 measurements of Dalanzadgad (43°34′37′′N, 104°25′8′′E) and Singapore (1°17′52′′N, 103°46′48′′E) sites from Aerosol Robotic Network (AERONET), respectively. In Zhangye, the algorithm had a Root Mean Square Error (RMSE) of 4.39 mm and a bias of 0.36 mm on cloud-free days, while on cloudy days there was an RMSE of 4.84 mm and a bias of 0.52 mm because of the effect of liquid water in clouds. The validations in Dalanzadgad and Singapore sites showed that the retrieval algorithm had an RMSE of 4.73 mm and a bias of 0.84 mm and the bigger errors appeared when the water vapor was very dry or very moist.


2016 ◽  
Vol 9 (9) ◽  
pp. 4687-4700 ◽  
Author(s):  
Filip Vanhellemont ◽  
Nina Mateshvili ◽  
Laurent Blanot ◽  
Charles Étienne Robert ◽  
Christine Bingen ◽  
...  

Abstract. The GOMOS instrument on Envisat has successfully demonstrated that a UV–Vis–NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II–AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set.


2021 ◽  
Vol 13 (9) ◽  
pp. 1701
Author(s):  
Leonardo Bagaglini ◽  
Paolo Sanò ◽  
Daniele Casella ◽  
Elsa Cattani ◽  
Giulia Panegrossi

This paper describes the Passive microwave Neural network Precipitation Retrieval algorithm for climate applications (PNPR-CLIM), developed with funding from the Copernicus Climate Change Service (C3S), implemented by ECMWF on behalf of the European Union. The algorithm has been designed and developed to exploit the two cross-track scanning microwave radiometers, AMSU-B and MHS, towards the creation of a long-term (2000–2017) global precipitation climate data record (CDR) for the ECMWF Climate Data Store (CDS). The algorithm has been trained on an observational dataset built from one year of MHS and GPM-CO Dual-frequency Precipitation Radar (DPR) coincident observations. The dataset includes the Fundamental Climate Data Record (FCDR) of AMSU-B and MHS brightness temperatures, provided by the Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO) project, and the DPR-based surface precipitation rate estimates used as reference. The combined use of high quality, calibrated and harmonized long-term input data (provided by the FIDUCEO microwave brightness temperature Fundamental Climate Data Record) with the exploitation of the potential of neural networks (ability to learn and generalize) has made it possible to limit the use of ancillary model-derived environmental variables, thus reducing the model uncertainties’ influence on the PNPR-CLIM, which could compromise the accuracy of the estimates. The PNPR-CLIM estimated precipitation distribution is in good agreement with independent DPR-based estimates. A multiscale assessment of the algorithm’s performance is presented against high quality regional ground-based radar products and global precipitation datasets. The regional and global three-year (2015–2017) verification analysis shows that, despite the simplicity of the algorithm in terms of input variables and processing performance, the quality of PNPR-CLIM outperforms NASA GPROF in terms of rainfall detection, while in terms of rainfall quantification they are comparable. The global analysis evidences weaknesses at higher latitudes and in the winter at mid latitudes, mainly linked to the poorer quality of the precipitation retrieval in cold/dry conditions.


2005 ◽  
Vol 62 (1) ◽  
pp. 220-230 ◽  
Author(s):  
Robert Nissen ◽  
Roland List ◽  
David Hudak ◽  
Greg M. McFarquhar ◽  
R. Paul Lawson ◽  
...  

Abstract For nonconvective, steady light rain with rain rates <5 mm h−1 the mean Doppler velocity of raindrop spectra was found to be constant below the melting band, when the drop-free fall speed was adjusted for pressure. The Doppler radar–weighted raindrop diameters varied from case to case from 1.5 to 2.5 mm while rain rates changed from 1.2 to 2.9 mm h−1. Significant changes of advected velocity moments were observed over periods of 4 min. These findings were corroborated by three independent systems: a Doppler radar for establishing vertical air speed and mean terminal drop speeds [using extended Velocity Azimuth Display (EVAD) analyses], a Joss–Waldvogel disdrometer at the ground, and a Particle Measuring System (PMS) 2-DP probe flown on an aircraft. These measurements were supported by data from upper-air soundings. The reason why inferred raindrop spectra do not change with height is the negligible interaction rate between raindrops at low rain rates. At low rain rates, numerical box models of drop collisions strongly support this interpretation. It was found that increasing characteristic drop diameters are correlated with increasing rain rates.


2014 ◽  
Vol 607 ◽  
pp. 830-834
Author(s):  
Hong Zhang Ma ◽  
Su Mei Liu

—Surface soil moisture is an important parameter in describing the water and energy exchanges at the land surface/atmosphere interface. Passive microwave remote sensors have great potential for monitoring surface soil moisture over land surface. The objective of this study is going to establish a model for estimating the effective temperature of land surface covered with vegetation canopy and to investigate how to compute the microwave radiative brightness temperature of land surface covered with vegetation canopy in considering of the canopy scatter effect.


Sign in / Sign up

Export Citation Format

Share Document