A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on board the GPM Core Observatory

2016 ◽  
Vol 33 (7) ◽  
pp. 1413-1428 ◽  
Author(s):  
Takuji Kubota ◽  
Toshio Iguchi ◽  
Masahiro Kojima ◽  
Liang Liao ◽  
Takeshi Masaki ◽  
...  

AbstractA statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

2015 ◽  
Vol 32 (12) ◽  
pp. 2281-2296 ◽  
Author(s):  
Robert Meneghini ◽  
Hyokyung Kim ◽  
Liang Liao ◽  
Jeffrey A. Jones ◽  
John M. Kwiatkowski

AbstractIt has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band–Ka-band combination.The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or σ0) of the surface, the statistics of σ0 derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.


2021 ◽  
Vol 13 (22) ◽  
pp. 4565
Author(s):  
Maria Panfilova ◽  
Vladimir Karaev

The algorithm to retrieve wind speed in a wide swath from the normalized radar cross section (NRCS) was developed for the data of Dual Frequency Precipitation Radar (DPR) operating in scanning mode installed onboard a Global Precipitation Measurement (GPM) satellite. The data for Ku-band radar were used. Equivalent NRCS values at nadir were estimated in a wide swath under the geometrical optics approximation from off-nadir observations. Using these equivalent NRCS nadir values and the sea buoys data, the new parameterization of dependence between NRCS at nadir and the wind speed was obtained. The algorithm was validated using ASCAT (Advanced Scatterometer) data and revealed good accuracy. DPR data are promising for determining wind speed in coastal areas.


2013 ◽  
Vol 52 (8) ◽  
pp. 1851-1867 ◽  
Author(s):  
Gerald M. Heymsfield ◽  
Lin Tian ◽  
Lihua Li ◽  
Matthew McLinden ◽  
Jaime I. Cervantes

AbstractA new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dual-wavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were ~39 m s−1 at 10.7-km altitude from the first flight line early on 24 May, and the lower value of ~25 m s−1 on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60 m s−1 for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed ~47 and ~37 dBZ, respectively, in these storms.


2016 ◽  
Vol 33 (9) ◽  
pp. 1887-1898 ◽  
Author(s):  
Jun Awaka ◽  
Minda Le ◽  
V. Chandrasekar ◽  
Naofumi Yoshida ◽  
Tomohiko Higashiuwatoko ◽  
...  

AbstractThe Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) algorithms consist of modules. This paper describes version 4 (V4) of GPM DPR level 2 (L2) classification (CSF) modules, which consist of two single-frequency (SF) modules—that is, Ku-only and Ka-only modules—and a dual-frequency (DF) module. Each CSF module detects bright band (BB) and classifies rain into three major types, that is, stratiform, convective, and other. The Ku-only and Ka-only CSF modules use algorithms that are similar to the Tropical Rainfall Measuring Mission (TRMM) rain type classification algorithm 2A23. The DF CSF module uses a new method called the measured dual-frequency ratio (DFRm) method for the rain type classification and the detection of BB. It is shown that the Ku-only CSF module and the DF CSF module produce almost indistinguishable rain type counts in a statistical sense. It is also shown that the DFRm method in the DF CSF module improves the detection of BB.


2021 ◽  
Author(s):  
Yoonjin Lee ◽  
Christian D. Kummerow ◽  
Milija Zupanski

Abstract. Latent heating (LH) is an important quantity in both weather forecasting and climate analysis, being the essential factor driving convective systems. Yet, inferring LH rates from our current observing systems is challenging at best. For climate studies, LH has been retrieved from the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) using model simulations in the look-up table (LUT) that relates instantaneous radar profiles to corresponding heating profiles. These radars, first on TRMM and then Global Precipitation Measurement (GPM), provide a continuous record of LH. However, with observations approximately 3 days apart, its temporal resolution is too coarse to be used to initiate convection in forecast models. In operational forecast models such as High-Resolution Rapid Refresh (HRRR), convection is initiated from LH derived from ground based radar. Despite the high spatial and temporal resolution of ground-based radars, one disadvantage of using it is that its data are only available over well observed land areas. This study suggests a method to derive LH from the Geostationary Operational-Environmental Satellite-16 (GOES-16) in near-real time. Even though the visible and infrared channels on the Advanced Baseline Imager (ABI) provide mostly cloud top information, rapid changes in cloud top visible and infrared properties, when coupled to a LUT similar to those used by the TRMM and GPM radars, can equally be used to derive LH profiles for convective regions using model simulations coupled to a convective classification scheme and channel 14 (11.2 μm) brightness temperature. Convective regions detected by GOES-16 are assigned LH from the LUT, and they are compared with LH from NEXRAD and one of Dual-frequency Precipitation Radar (DPR) products, Goddard Convective-Stratiform Heating (CSH). LH obtained from GOES-16 show similar magnitude with NEXRAD and CSH, and vertical distribution of LH is also very similar with CSH. Overall, GOES LH appear to have the ability to mimic LH from radars, although the area identified as convective is roughly 25 % smaller than the current HRRR model, while the heating is correspondingly higher.


2018 ◽  
Vol 35 (6) ◽  
pp. 1181-1199 ◽  
Author(s):  
E. F. Stocker ◽  
F. Alquaied ◽  
S. Bilanow ◽  
Y. Ji ◽  
L. Jones

AbstractThe National Aeronautics and Space Administration (NASA) has always included data reprocessing as a major component of every science mission. A final reprocessing is typically a part of mission closeout (known as phase F). The Tropical Rainfall Measuring Mission (TRMM) is currently in phase F, and NASA is preparing for the last reprocessing of all the TRMM precipitation data as part of the closeout. This reprocessing includes improvements in calibration of both the TRMM Microwave Imager (TMI) and the TRMM Precipitation Radar (PR). An initial step in the version 8 reprocessing is the improvement of geolocation. The PR calibration is being updated by the Japan Aerospace Exploration Agency (JAXA) using data collected as part of the calibration of the Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Core Observatory. JAXA undertook a major effort to ensure TRMM PR and GPM Ku-band calibration is consistent.A major component of the TRMM version 8 reprocessing is to create consistent retrievals with the GPM version 05 (V05) retrievals. To this end, the TRMM version 8 reprocessing uses retrieval algorithms based on the GPM V05 algorithms. This approach ensures consistent retrievals from December 1997 (the beginning of TRMM) through the current ongoing GPM retrievals. An outcome of this reprocessing is the incorporation of TRMM data products into the GPM data suite. Incorporation also means that GPM file naming conventions and reprocessed TRMM data carry the V05 data product version. This paper describes the TRMM version 8 reprocessing, focusing on the improvements in TMI level 1 products.


2018 ◽  
Vol 10 (11) ◽  
pp. 1773 ◽  
Author(s):  
Sounak Biswas ◽  
V. Chandrasekar

The Global Precipitation Measurement (GPM) mission Core Observatory is equipped with a dual-frequency precipitation radar (DPR) with capability of measuring precipitation simultaneously at frequencies of 13.6 GHz (Ku-band) and 35.5 GHz (Ka-band). Since the GPM-DPR cannot use information from polarization diversity, radar reflectivity factor is the most important parameter used in all retrievals. In this study, GPM’s observations of reflectivity at dual-frequency and instantaneous rainfall products are compared quantitatively against dual-polarization ground-based NEXRAD radars from the GPM Validation Network (VN). The ground radars, chosen for this study, are located in the southeastern plains of the U.S.A. with altitudes varying from 5 to 210 m. It is a challenging task to quantitatively compare measurements from space-based and ground-based platforms due to their difference in resolution volumes and viewing geometry. To perform comparisons on a point-to-point basis, radar observations need to be volume matched by averaging data in common volume or by re-sampling data to a common grid system. In this study, a 3-D volume matching technique first proposed by Bolen and Chandrasekar (2003) and later modified by Schwaller and Morris (2011) is applied to both radar data. DPR and ground radar observations and products are cross validated against each other with a large data set. Over 250 GPM overpass cases at 5 NEXRAD locations, starting from April 2014 to June 2018, have been considered. Analysis shows that DPR Ku- and Ka-Band reflectivities are well matched with ground radar with correlation coefficient as high as 0.9 for Ku-band and 0.85 for Ka-band. Ground radar calibration is also checked by observing variation in mean biases of reflectivity between DPR and GR over time. DPR rainfall products are also evaluated. Though DPR underestimates higher rainfall rates in convective cases, its overall performance is found to be satisfactory.


Sign in / Sign up

Export Citation Format

Share Document