scholarly journals Calibrating Ground-Based Radars against TRMM and GPM

2018 ◽  
Vol 35 (2) ◽  
pp. 323-346 ◽  
Author(s):  
Robert A. Warren ◽  
Alain Protat ◽  
Steven T. Siems ◽  
Hamish A. Ramsay ◽  
Valentin Louf ◽  
...  

AbstractCalibration error represents a significant source of uncertainty in quantitative applications of ground-based radar (GR) reflectivity data. Correcting it requires knowledge of the true reflectivity at well-defined locations and times during a volume scan. Previous work has demonstrated that observations from certain spaceborne radar (SR) platforms may be suitable for this purpose. Specifically, the Ku-band precipitation radars on board the Tropical Rainfall Measuring Mission (TRMM) satellite and its successor, the Global Precipitation Measurement (GPM) mission Core Observatory satellite together provide nearly two decades of well-calibrated reflectivity measurements over low-latitude regions (±35°). However, when comparing SR and GR reflectivities, great care must be taken to account for differences in instrument sensitivity and frequency, and to ensure that the observations are spatially and temporally coincident. Here, a volume-matching method, developed as part of the ground validation network for GPM, is adapted and used to quantify historical calibration errors for three S-band radars in the vicinity of Sydney, Australia. Volume-matched GR–SR sample pairs are identified over a 7-yr period and carefully filtered to isolate reflectivity differences associated with GR calibration error. These are then used in combination with radar engineering work records to derive a piecewise-constant time series of calibration error for each site. The efficacy of this approach is verified through comparisons between GR reflectivities in regions of overlapping coverage, with improved agreement when the estimated errors are removed.

2014 ◽  
Vol 31 (9) ◽  
pp. 1902-1921 ◽  
Author(s):  
Ji-Hye Kim ◽  
Mi-Lim Ou ◽  
Jun-Dong Park ◽  
Kenneth R. Morris ◽  
Mathew R. Schwaller ◽  
...  

Abstract Since 2009, the Korea Meteorological Administration (KMA) has participated in ground validation (GV) projects through international partnerships within the framework of the Global Precipitation Measurement (GPM) Mission. The goal of this work is to assess the reliability of ground-based measurements in the Korean Peninsula as a means for validating precipitation products retrieved from satellite microwave sensors, with an emphasis on East Asian precipitation. KMA has a well-developed operational weather service infrastructure composed of meteorological radars, a dense rain gauge network, and automated weather stations. Measurements from these systems, including data from four ground-based radars (GRs), were combined with satellite data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and used as a proxy for GPM GV over the Korean Peninsula. A time series of mean reflectivity differences (GR − PR) for stratiform-only and above-brightband-only data showed that the time-averaged difference fell between −2.0 and +1.0 dBZ for the four GRs used in this study. Site-specific adjustments for these relative mean biases were applied to GR reflectivities, and detailed statistical comparisons of reflectivity and rain rate between PR and bias-adjusted GR were carried out. In rain-rate comparisons, surface rain from the TRMM Microwave Imager (TMI) and the rain gauges were added and the results varied according to rain type. Bias correction has had a positive effect on GR rain rate comparing with PR and gauge rain rates. This study confirmed advance preparation for GPM GV system was optimized on the Korean Peninsula using the official framework.


2006 ◽  
Vol 23 (11) ◽  
pp. 1492-1505 ◽  
Author(s):  
Eyal Amitai ◽  
David A. Marks ◽  
David B. Wolff ◽  
David S. Silberstein ◽  
Brad L. Fisher ◽  
...  

Abstract Evaluation of the Tropical Rainfall Measuring Mission (TRMM) satellite observations is conducted through a comprehensive ground validation (GV) program. Since the launch of TRMM in late 1997, standardized instantaneous and monthly rainfall products are routinely generated using quality-controlled ground-based radar data adjusted to the gauge accumulations from four primary sites. As part of the NASA TRMM GV program, effort is being made to evaluate these GV products. This paper describes the product evaluation effort for the Melbourne, Florida, site. This effort allows us to evaluate the radar rainfall estimates, to improve the algorithms in order to develop better GV products for comparison with the satellite products, and to recognize the major limiting factors in evaluating the estimates that reflect current limitations in radar rainfall estimation. Lessons learned and suggested improvements from this 8-yr mission are summarized in the context of improving planning for future precipitation missions, for example, the Global Precipitation Measurement (GPM).


2018 ◽  
Vol 11 (9) ◽  
pp. 5223-5236 ◽  
Author(s):  
Irene Crisologo ◽  
Robert A. Warren ◽  
Kai Mühlbauer ◽  
Maik Heistermann

Abstract. We explore the potential of spaceborne radar (SR) observations from the Ku-band precipitation radars onboard the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites as a reference to quantify the ground radar (GR) reflectivity bias. To this end, the 3-D volume-matching algorithm proposed by Schwaller and Morris (2011) is implemented and applied to 5 years (2012–2016) of observations. We further extend the procedure by a framework to take into account the data quality of each ground radar bin. Through these methods, we are able to assign a quality index to each matching SR–GR volume, and thus compute the GR calibration bias as a quality-weighted average of reflectivity differences in any sample of matching GR–SR volumes. We exemplify the idea of quality-weighted averaging by using the beam blockage fraction as the basis of a quality index. As a result, we can increase the consistency of SR and GR observations, and thus the precision of calibration bias estimates. The remaining scatter between GR and SR reflectivity as well as the variability of bias estimates between overpass events indicate, however, that other error sources are not yet fully addressed. Still, our study provides a framework to introduce any other quality variables that are considered relevant in a specific context. The code that implements our analysis is based on the wradlib open-source software library, and is, together with the data, publicly available to monitor radar calibration or to scrutinize long series of archived radar data back to December 1997, when TRMM became operational.


2021 ◽  
Vol 13 (9) ◽  
pp. 1745
Author(s):  
Jianxin Wang ◽  
Walter A. Petersen ◽  
David B. Wolff

The global precipitation measurement mission (GPM) has been in operation for seven years and continues to provide a vast quantity of global precipitation data at finer temporospatial resolutions with improved accuracy and coverage. GPM’s signature algorithm, the integrated multisatellite retrievals for GPM (IMERG) is a next-generation of precipitation product expected for wide variety of research and operational applications. This study evaluates the latest version (V06B) of IMERG and its predecessor, the tropical rainfall measuring mission (TRMM) multisatellite precipitation (TMPA) 3B42 (V7) using ground-based and gauge-corrected multiradar multisensor system (MRMS) precipitation products over the conterminous United States (CONUS). The spatial distributions of all products are analyzed. The error characteristics are further examined for 3B42 and IMERG in winter and summer by an error decomposition approach, which partitions total bias into hit bias, biases due to missed precipitation and false precipitation. The volumetric and categorical statistical metrics are used to quantitatively evaluate the performance of the two satellite-based products. All products show a similar precipitation climatology with some regional differences. The two satellite-based products perform better in the eastern CONUS than in the mountainous Western CONUS. The evaluation demonstrates the clear improvement in IMERG precipitation product in comparison with its predecessor 3B42, especially in reducing missed precipitation in winter and summer, and hit bias in winter, resulting in better performance in capturing lighter and heavier precipitation.


2019 ◽  
Vol 11 (6) ◽  
pp. 697 ◽  
Author(s):  
Fenglin Xu ◽  
Bin Guo ◽  
Bei Ye ◽  
Qia Ye ◽  
Huining Chen ◽  
...  

Accurate estimation of high-resolution satellite precipitation products like Global Precipitation Measurement (GPM) and Tropical Rainfall Measuring Mission (TRMM) is critical for hydrological and meteorological research, providing a benchmark for the continued development and future improvement of these products. This study aims to comprehensively evaluate the Integrated Multi-Satellite Retrievals for GPM (IMERG) and TRMM 3B42V7 products at multiple temporal scales from 1 January 2015 to 31 December 2017 over the Huang-Huai-Hai Plain in China, using daily precipitation data from 59 meteorological stations. Three commonly used statistical metrics (CC, RB, and RMSE) are adopted to quantitatively verify the accuracy of two satellite precipitation products. The assessment also takes into account the precipitation detection capability (POD, FAR, CSI, and ACC) and frequency of different precipitation intensities. The results show that the IMERG and 3B42V7 present strong correlation with meteorological stations observations at annual and monthly scales (CC > 0.90), whereas moderate at the daily scale (CC = 0.76 and 0.69 for IMERG and 3B42V7, respectively). The spatial variability of the annual and seasonal precipitation is well captured by these two satellite products. And spatial patterns of precipitation gradually decrease from south to north over the Huang-Huai-Hai Plain. Both IMERG and 3B42V7 products overestimate precipitation compared with the station observations, of which 3B42V7 has a lower degree of overestimation. Relative to the IMERG, annual precipitation estimates from 3B42V7 show lower RMSE (118.96 mm and 142.67 mm, respectively), but opposite at the daily, monthly, and seasonal scales. IMERG has a better precipitation detection capability than 3B42V7 (POD = 0.83 and 0.67, respectively), especially when detecting trace and solid precipitation. The two precipitation products tend to overestimate moderate (2–10 mm/d) and heavy (10–50 mm/d) precipitation events, but underestimate violent (>50 mm/d) precipitation events. The IMERG is not found capable to detecting precipitation events of different frequencies more precisely. In general, the accuracy of IMERG is better than 3B42V7 product in the Huang-Huai-Hai Plain. The IMERG satellite precipitation product with higher temporal and spatial resolutions can be regarded a reliable data sources in studying hydrological and climatic research.


2019 ◽  
Vol 11 (19) ◽  
pp. 2314 ◽  
Author(s):  
Anjum ◽  
Ahmad ◽  
Ding ◽  
Shangguan ◽  
Zaman ◽  
...  

This study presents an assessment of the version-6 (V06) of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) product from June 2014 to December 2017 over different hydro-climatic regimes in the Tianshan Mountains. The performance of IMERG-V06 was compared with IMERG-V05 and the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 precipitation products. The precipitation products were assessed against gauge-based daily and monthly precipitation observations over the entire spatial domain and five hydro-climatologically distinct sub-regions. Results showed that: (1) The spatiotemporal variability of average daily precipitation over the study domain was well represented by all products. (2) All products showed better correlations with the monthly gauge-based observations than the daily data. Compared to 3B42V7, both IMERG products presented a better agreement with gauge-based observations. (3) The estimation skills of all precipitation products showed significant spatial variations. Overall performance of all precipitation products was better in the Eastern region compared to the Middle and Western regions. (4) Satellite products were able to detect tiny precipitation events, but they were uncertain in capturing light and moderate precipitation events. (5) No significant improvements in the precipitation estimation skill of IMERG-V06 were found as compared to IMERG-V05. We deduce that the IMERG-V06 precipitation detection capability could not outperform the efficiency of IMERG-V05. This comparative evaluation of the research products of Global Precipitation Measurement (GPM) and TRMM products in the Tianshan Mountains is useful for data users and algorithm developers.


2020 ◽  
Author(s):  
Linda Bogerd ◽  
Hidde Leijnse ◽  
Aart Overeem ◽  
Remko Uijlenhoet

<p><span><span>Satellite-based remote sensing provides a unique opportunity for the estimation of global precipitation patterns. </span><span>In order to use this approach, it is crucial that the uncertainty in the satellite estimations is precisely understood. T</span><span>he retrieval</span><span> of high-latitude precipitation </span><span>(especially shallow precipitation) </span><span>remains challenging for satellite precipitation monitoring. </span><span>This </span><span>project</span><span> will quantify the quality of the precipitation estimations obtained from</span> <span>the Global Precipitation Measurement (GPM) mission, where the focus will be on the level II and III products.</span> <span>Initially, t</span><span>h</span><span>e </span><span>Netherlands </span><span>is chosen as research area, since it has an excellent infrastructure with both in-situ and remotely sensed ground-based precipitation measurements, </span><span>its flat topography,</span> <span>and the </span><span>frequent</span> <span>occurrence</span><span> of shallow precipitation events. The project will study the influence of precipitation type and the impact of the seasons on the accuracy </span><span>of the GPM products. </span><span>Hereafter, the project will focus on the physical causes behind the discrepancies between the GPM products and the ground validation</span><span>, </span><span>w</span><span>hich can be used to improve the </span><span>retrieval</span><span> algorithms. The </span><span>presentation</span><span> will outline the project structure and will demonstrate </span><span>the</span> <span>initial</span><span> results. </span></span></p>


Sign in / Sign up

Export Citation Format

Share Document