scholarly journals Improved SSM/I thin ice algorithm with ice type discrimination in coastal polynyas

Author(s):  
Haruhiko Kashiwase ◽  
Kay I. Ohshima ◽  
Kazuki Nakata ◽  
Takeshi Tamura

AbstractLong-term quantification of sea ice production in coastal polynyas (thin sea ice areas) is an important issue to understand the global overturning circulation and its changes. The Special Sensor Microwave/Imager (SSM/I), which has nearly 30 years of observation, is a powerful tool for that purpose owing to its ability to detect thin ice areas. However, previous SSM/I thin ice thickness algorithms differ between regions, probably due to the difference in dominant type of thin sea ice in each region. In this study, we developed an SSM/I thin ice thickness algorithm that accounts for three types of thin sea ice (active frazil, thin solid ice, and a mixture of two types), using the polarization and gradient ratios. The algorithm is based on comparison with the ice thickness derived from the MODerate resolution Imaging Spectroradiometer (MODIS) for 22 polynya events off the Ross Ice Shelf, off Cape Darnley, and off the Ronne Ice Shelf in the Southern Ocean. The algorithm can properly discriminate the ice type in coastal polynyas and estimate the thickness of thin sea ice (≤20 cm) with an error range of less than 6 cm. We also confirmed that the algorithm can be applied to other passive microwave radiometers with higher spatial resolution to obtain more accurate and detailed distributions of ice type and thickness. The validation of this algorithm in the Arctic Ocean, suggests its applicability to the global oceans.

2016 ◽  
Author(s):  
Kirill Khvorostovsky ◽  
Pierre Rampal

Abstract. Sea ice freeboard derived from satellite altimetry is the basis for estimation of sea ice thickness using the assumption of hydrostatic equilibrium. High accuracy of altimeter measurements and freeboard retrieval procedure are therefore required. As of today, two approaches for estimation of the freeboard using laser altimeter measurements from Ice, Cloud, and land Elevation Satellite (ICESat), referred to as tie-points (TP) and lowest-level elevation (LLE) methods, have been developed and applied in different studies. We reproduced these methods in order to assess and analyze the sources of differences found in the retrieved freeboard and corresponding thickness estimates of the Arctic sea ice as produced by the Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC). For the ICEsat observation periods (2003–2008) it is found that when applying the same along-track averaging scales in the two methods to calculate the local sea level references the LLE method gives significantly lower (by up to 15 cm) sea ice freeboard estimates over thick multi-year ice areas, but significantly larger estimates (by 3–5 cm in average and locally up to about 10 cm) over thin first-year ice areas, as compared to the TP method. However, we show that the difference over first-year ice areas can be reduced to less than 2 cm when using the improved TP method proposed in this paper. About 4 cm of the difference in the JPL and GSFC freeboard estimates can be attributed to the different along-track averaging scales used to calculate the local sea level references. We show that the effect of applying corrections for lead width relative to the ICESat footprint, and for snow depth accumulated in refrozen leads (as it is done for the last release of the JPL product), is very large and increase freeboard estimates by about 7 cm. Thus, the different along-track averaging scales and approaches to calculate sea surface references, from one side, and the freeboard adjustments as applied in the TP method used to produce the JPL dataset, from the other side, are roughly compensating each other with respect to freeboard estimation. Therefore the difference in the mean sea ice thickness found between the JPL and GSFC datasets should be attributed to different parameters used in the freeboard-to-thickness conversion.


2015 ◽  
Vol 9 (4) ◽  
pp. 3959-3993
Author(s):  
S. Paul ◽  
S. Willmes ◽  
G. Heinemann

Abstract. Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002–2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km2 and 4 ± 3 km3 (Antarctic Peninsula), 1148 ± 432 km2 and 12 ± 5 km3 (Iceberg A23A), 901 ± 703 km2 and 10 ± 8 km3 (Filchner Ice Shelf) as well as 499 ± 277 km2 and 5 ± 2 km3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.


2020 ◽  
Vol 14 (11) ◽  
pp. 3761-3783
Author(s):  
Hoyeon Shi ◽  
Byung-Ju Sohn ◽  
Gorm Dybkjær ◽  
Rasmus Tage Tonboe ◽  
Sang-Moo Lee

Abstract. A method of simultaneously estimating snow depth and sea ice thickness using satellite-based freeboard measurements over the Arctic Ocean during winter was proposed. The ratio of snow depth to ice thickness (referred to as α) was defined and used in constraining the conversion from the freeboard to ice thickness in satellite altimetry without prior knowledge of snow depth. Then α was empirically determined using the ratio of temperature difference of the snow layer to the difference of the ice layer to allow the determination of α from satellite-derived snow surface temperature and snow–ice interface temperature. The proposed method was evaluated against NASA's Operation IceBridge measurements, and results indicated that the algorithm adequately retrieves snow depth and ice thickness simultaneously; retrieved ice thickness was found to be better than the methods relying on the use of snow depth climatology as input in terms of mean bias. The application of the proposed method to CryoSat-2 radar freeboard measurements yields similar results. In conclusion, the developed α-based method has the capacity to derive ice thickness and snow depth without relying on the snow depth information as input for the buoyancy equation or the radar penetration correction for converting freeboard to ice thickness.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2021 ◽  
Author(s):  
Isolde Glissenaar ◽  
Jack Landy ◽  
Alek Petty ◽  
Nathan Kurtz ◽  
Julienne Stroeve

<p>The ice cover of the Arctic Ocean is increasingly becoming dominated by seasonal sea ice. It is important to focus on the processing of altimetry ice thickness data in thinner seasonal ice regions to understand seasonal sea ice behaviour better. This study focusses on Baffin Bay as a region of interest to study seasonal ice behaviour.</p><p>We aim to reconcile the spring sea ice thickness derived from multiple satellite altimetry sensors and sea ice charts in Baffin Bay and produce a robust long-term record (2003-2020) for analysing trends in sea ice thickness. We investigate the impact of choosing different snow depth products (the Warren climatology, a passive microwave snow depth product and modelled snow depth from reanalysis data) and snow redistribution methods (a sigmoidal function and an empirical piecewise function) to retrieve sea ice thickness from satellite altimetry sea ice freeboard data.</p><p>The choice of snow depth product and redistribution method results in an uncertainty envelope around the March mean sea ice thickness in Baffin Bay of 10%. Moreover, the sea ice thickness trend ranges from -15 cm/dec to 20 cm/dec depending on the applied snow depth product and redistribution method. Previous studies have shown a possible long-term asymmetrical trend in sea ice thinning in Baffin Bay. The present study shows that whether a significant long-term asymmetrical trend was found depends on the choice of snow depth product and redistribution method. The satellite altimetry sea ice thickness results with different snow depth products and snow redistribution methods show that different processing techniques can lead to different results and can influence conclusions on total and spatial sea ice thickness trends. Further processing work on the historic radar altimetry record is needed to create reliable sea ice thickness products in the marginal ice zone.</p>


2018 ◽  
Vol 12 (9) ◽  
pp. 3033-3044 ◽  
Author(s):  
Xiying Liu

Abstract. To study the influence of basal melting of the Ross Ice Shelf (BMRIS) on the Southern Ocean (ocean southward of 35∘ S) in quasi-equilibrium, numerical experiments with and without the BMRIS effect were performed using a global ocean–sea ice–ice shelf coupled model. In both experiments, the model started from a state of quasi-equilibrium ocean and was integrated for 500 years forced by CORE (Coordinated Ocean-ice Reference Experiment) normal-year atmospheric fields. The simulation results of the last 100 years were analyzed. The melt rate averaged over the entire Ross Ice Shelf is 0.25 m a−1, which is associated with a freshwater flux of 3.15 mSv (1 mSv = 103 m3 s−1). The extra freshwater flux decreases the salinity in the region from 1500 m depth to the sea floor in the southern Pacific and Indian oceans, with a maximum difference of nearly 0.005 PSU in the Pacific Ocean. Conversely, the effect of concurrent heat flux is mainly confined to the middle depth layer (approximately 1500 to 3000 m). The decreased density due to the BMRIS effect, together with the influence of ocean topography, creates local differences in circulation in the Ross Sea and nearby waters. Through advection by the Antarctic Circumpolar Current, the flux difference from BMRIS gives rise to an increase of sea ice thickness and sea ice concentration in the Ross Sea adjacent to the coast and ocean water to the east. Warm advection and accumulation of warm water associated with differences in local circulation decrease sea ice concentration on the margins of sea ice cover adjacent to open water in the Ross Sea in September. The decreased water density weakens the subpolar cell as well as the lower cell in the global residual meridional overturning circulation (MOC). Moreover, we observe accompanying reduced southward meridional heat transport at most latitudes of the Southern Ocean.


1980 ◽  
Vol 1 ◽  
pp. 55-55
Author(s):  
Sion Shabtaie ◽  
Charles R. Bentley

Recent geophysical and glaciological investigations of the Ross Ice Shelf have revealed many complexities in the ice shelf that can be important factors in iceberg structure. The presence of rift zones, surface and bottom crevasses, corrugations, ridges and troughs, and other features could substantially modify the hydraulics of iceberg towing and lead to disintegration of the berg in the course of transport.The relationships between the elevation above sea-level and total ice thickness for three ice shelves (Ross, Brunt, and McMurdo) are given; from them, expressions for the thickness/freeboard ratios of tabular icebergs calved from these ice shelves are obtained. The relationships obtained from the measured values of surface elevation and ice thickness are in agreement with models derived assuming hydrostatic equilibrium.Areas of brine infiltration into the Ross Ice Shelf have been mapped. Examples of radar profiles in these zones are shown. Absorption from the brine layers results in a poor or absent bottom echo. It is probable that little saline ice exists at the bottom of the Ross Ice Shelf front due to a rapid bottom melting near the ice front, and that the thickness of the saline ice at the bottom of icebergs calving from the Ross Ice Shelf is no more than a few meters, if there is any at all.We have observed many rift zones on the ice shelf by airborne radar techniques, and at one site the bottom and surface topographies of (buried) rift zones have been delineated. These rift zones play an obvious role in iceberg formation and may also affect the dynamics of iceberg transport. Bottom crevasses with different shapes, sizes, and spacings are abundant in ice shelves; probably some are filled with saline ice and others with unfrozen sea-water. Existence of these bottom crevasses could lead to a rapid disintegration of icebergs in the course of transport, as well as increasing the frictional drag at the ice-water boundary.Radar profiles of the ice-shelf barrier at four sites in flow bands of very different characteristics are shown. In some places rifting upstream from the barrier shows regular spacings, suggesting a periodic calving. Differential bottom melting near the barrier causes the icebergs to have an uneven surface and bottom (i.e. dome-shaped).Electrical resistivity soundings on the ice shelf can be applied to estimate the temperature-depth function, and from that the basal mass-balance rate. With some modifications, the technique may also be applied to estimating the basal mass-balance rates of tabular icebergs.


2010 ◽  
Vol 11 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Yi-Ching Chung ◽  
Stéphane Bélair ◽  
Jocelyn Mailhot

Abstract The new Recherche Prévision Numérique (NEW-RPN) model, a coupled system including a multilayer snow thermal model (SNTHERM) and the sea ice model currently used in the Meteorological Service of Canada (MSC) operational forecasting system, was evaluated in a one-dimensional mode using meteorological observations from the Surface Heat Budget of the Arctic Ocean (SHEBA)’s Pittsburgh site in the Arctic Ocean collected during 1997/98. Two parameters simulated by NEW-RPN (i.e., snow depth and ice thickness) are compared with SHEBA’s observations and with simulations from RPN, MSC’s current coupled system (the same sea ice model and a single-layer snow model). Results show that NEW-RPN exhibits better agreement for the timing of snow depletion and for ice thickness. The profiles of snow thermal conductivity in NEW-RPN show considerable variability across the snow layers, but the mean value (0.39 W m−1 K−1) is within the range of reported observations for SHEBA. This value is larger than 0.31 W m−1 K−1, which is commonly used in single-layer snow models. Of particular interest in NEW-RPN’s simulation is the strong temperature stratification of the snowpack, which indicates that a multilayer snow model is needed in the SHEBA scenario. A sensitivity analysis indicates that snow compaction is also a crucial process for a realistic representation of the snowpack within the snow/sea ice system. NEW-RPN’s overestimation of snow depth may be related to other processes not included in the study, such as small-scale horizontal variability of snow depth and blowing snow processes.


2015 ◽  
Vol 8 (10) ◽  
pp. 4025-4041 ◽  
Author(s):  
H.-J. Kang ◽  
J.-M. Yoo ◽  
M.-J. Jeong ◽  
Y.-I. Won

Abstract. Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16–24 April and 15–23 September) 2003–2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to −2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992–0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968–0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of −0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade−1) in the northern high regions (70–80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.


Sign in / Sign up

Export Citation Format

Share Document