scholarly journals Determining Bottom Reflectance and Water Optical Properties Using Unmanned Underwater Vehicles under Clear or Cloudy Skies

2006 ◽  
Vol 23 (2) ◽  
pp. 314-324 ◽  
Author(s):  
David C. English ◽  
Kendall L. Carder

Abstract An unmanned underwater vehicle (UUV) with hyperspectral optical sensors that measure downwelling irradiance and upwelling radiance was deployed over sandy bottoms, sea grass patches, and coral reefs near Lee Stocking Island, Bahamas, during the Coastal Benthic Optical Properties (CoBOP) program of 2000. These deployments occurred during both sunny and cloudy weather. If the rate of irradiance change due to cloud cover is slight, then the inclusion of a variable cloudy-irradiance factor will allow a reasonable estimation of water column absorption. Examination of data from a deployment in May 2000 under cloudy skies shows that the combination of hyperspectral light-field measurements, knowledge of the UUV's position in the water column, and a cloudy-irradiance factor permits consistent estimations of bottom reflectivity to be made from UUV measured reflectances. The spatial distribution of reflectance estimates obtained from a UUV may be useful for validation of airborne ocean color imagery.

2018 ◽  
Vol 8 (12) ◽  
pp. 2677 ◽  
Author(s):  
Linhai Li ◽  
Dariusz Stramski ◽  
Mirosław Darecki

Although the light fields and apparent optical properties (AOPs) within the ocean euphotic layer have been studied for many decades through extensive measurements and theoretical modeling, there is virtually a lack of simultaneous high spectral resolution measurements of plane and scalar downwelling and upwelling irradiances (the so-called irradiance quartet). We describe a unique dataset of hyperspectral irradiance quartet, which was acquired under a broad range of environmental conditions within the water column from the near-surface depths to about 80 m in the Gulf of California. This dataset enabled the characterization of a comprehensive suite of AOPs for realistic non-uniform vertical distributions of seawater inherent optical properties (IOPs) and chlorophyll-a concentration (Chl) in the common presence of inelastic radiative processes within the water column, in particular Raman scattering by water molecules and chlorophyll-a fluorescence. In the blue and green spectral regions, the vertical patterns of AOPs are driven primarily by IOPs of seawater with weak or no discernible effects of inelastic processes. In the red, the light field and AOPs are strongly affected or totally dominated by inelastic processes of Raman scattering by water molecules, and additionally by chlorophyll-a fluorescence within the fluorescence emission band. The strongest effects occur in the chlorophyll-a fluorescence band within the chlorophyll-a maximum layer, where the average cosines of the light field approach the values of uniform light field, irradiance reflectance is exceptionally high approaching 1, and the diffuse attenuation coefficients for various irradiances are exceptionally low, including the negative values for the attenuation of upwelling plane and scalar irradiances. We established the empirical relationships describing the vertical patterns of some AOPs in the red spectral region as well as the relationships between some AOPs which can be useful in common experimental situations when only the downwelling plane irradiance measurements are available. We also demonstrated the applicability of irradiance quartet data in conjunction with Gershun’s equation for estimating the absorption coefficient of seawater in the blue-green spectral region, in which the effects of inelastic processes are weak or negligible.


2020 ◽  
Vol 17 ◽  
Author(s):  
Dilawar Hassan ◽  
Hadi Bakhsh ◽  
Asif M. Khurram ◽  
Shakeel A. Bhutto ◽  
Nida S. Jalbani ◽  
...  

Background: The optical properties of nanomaterials have evolved enormously with the introduction of nanotechnology. The property of materials to absorb and/or emit specific wavelength has turned them into one of the most favourite candidates to be effectively utilized in different sensing applications e.g organic light emission diodes (OLEDs) sensors, gas sensors, biosensors and fluorescent sensors. These materials have been reported as a sensor in the field of tissue and cell imaging, cancer detection and detection of environmental contaminants etc. Fluorescent nanomaterials are heling in rapid and timely detection of various contaminants that greatly impact the quality of life and food, that is exposed to these contaminants. Later, all the contaminants have been investigated to be most perilous entities that momentously affect the life span of the animals and humans who use those foods which have been contaminated. Objective: In this review, we will discuss about various methods and approaches to synthesize the fluorescent nanoparticles and quantum dots (QDs) and their applications in various fields. The application will include the detection of various environmental contaminants and bio-medical applications. We will discuss the possible mode of action of the nanoparticles when used as sensor for the environmental contaminants as well as the surface modification of some fluorescent nanomaterials with anti-body and enzyme for specific detection in animal kingdom. We will also describe some RAMAN based sensors as well as some optical sensing-based nanosensors. Conclusion: Nanotechnology has enabled to play with the size, shape and morphology of materials in the nanoscale. The physical, chemical and optical properties of materials change dramatically when they are reduced to nanoscale. The optical properties can become choosy in terms of emission or absorption of wavelength in the size range and can result in production of very sensitive optical sensor. The results show that the use of fluorescent nanomaterials for the sensing purposes are helping a great deal in the sensing field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


2016 ◽  
Vol 16 (18) ◽  
pp. 11711-11732 ◽  
Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  

Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg−1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg−1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg−1) and the mass absorption coefficient (MAC, m2 g−1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg−1). Aerosol absorption at 405 nm was  ∼  52 times larger than at 870 nm and BrC contributed  ∼  96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ∼  0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 =  0.65).


2019 ◽  
Vol 27 (1) ◽  
pp. 332-345 ◽  
Author(s):  
Charita Darshana Makavita ◽  
Shantha Gamini Jayasinghe ◽  
Hung Duc Nguyen ◽  
Dev Ranmuthugala

Sign in / Sign up

Export Citation Format

Share Document