scholarly journals Geoelectric Monitoring of Wind-Driven Barotropic Transports in the Baltic Sea

2007 ◽  
Vol 24 (9) ◽  
pp. 1655-1664 ◽  
Author(s):  
Jenny A. U. Nilsson ◽  
Peter Sigray ◽  
Robert H. Tyler

Abstract The possibility of using data from a cable-based observational system for long-term monitoring of barotropic flow in the Baltic Sea was investigated. Measurements were made of the induced potential differences between Visby on the island of Gotland and Västervik on the Swedish mainland and a yearlong period was studied in order to ensure the presence of seasonal fluctuations. The predictions from a 2D electric-potential model, forced by velocity fields from a shallow-water circulation model, proved to be well correlated with the observations. A winter and a summer period were selected for a thorough analysis, the results of which indicated a stronger correlation during winter. This implies that the relative importance of the barotropic forcing tends to weaken during summer. The spatial coverage of the induced potential differences for the cable region was found to encompass a considerable part of the Baltic proper. The correlation study indicated that the winter circulation in the Baltic proper showed “broad-scale” motion, whereas summer conditions were characterized by a barotropic gyre. An overall result of the investigation is that geoelectric monitoring is capable of providing useful data for oceanographic purposes.

2016 ◽  
Author(s):  
H. Dietze ◽  
U. Löptien

Abstract. Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth), are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds (also referred to as eddy/wind effects) on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current/wind effects does inhibit the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however, as e.g. off the south coast of Sweden and Finland, the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current/wind effects drive substantial local upwelling of cold and nutrient-replete waters.


2021 ◽  
Author(s):  
Ida Margrethe Ringgaard ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Adili Abulaitijiang ◽  
Ole B. Andersen

<p>The rise and fall of the sea surface in the coastal region is observed closely by two different sources: tide gauges measure the relative sea level anomaly at the coast at high temporal resolution (minutes or hours) and satellite altimeters measure the absolute sea surface height of the open ocean along tracks multiple times a day. However, these daily tracks are scattered across the Baltic Sea with each track being repeated at a lower temporal resolution (days). Due to the inverse relationship between spatial and temporal coverage of the satellite altimetry data, gridded satellite altimetry products often prioritize spatial coverage over temporal resolution, thus filtering out the high sea level variability. In other words, the satellite data, and especially averaged products, often miss the daily sea level variability, such as storm surges, which is most important for all societies in the coastal region. To compensate for the sparse spatial coverage from satellite altimetry, we here present an experimental product developed as part of the ESA project Baltic+SEAL:  on a 3-day scale, the DMI Optimal Interpolation (DMI-OI) method is combined with error statistics from a storm surge model as well as 3-day averages from both tide gauge observations and satellite altimetry tracks to generate a gridded sea level anomaly product for the Baltic Sea for year 2017. The product captures the overall temporal evolution of the sea level changes well for most areas with an average RMSE wrt. tide gauge observations of 17.2 cm and a maximum of 34.2 cm. Thus, the 3-day mean gridded product shows potential as an alternative to monthly altimetry products, although further work is needed.</p>


2017 ◽  
Vol 14 (8) ◽  
pp. 2113-2131 ◽  
Author(s):  
Ye Liu ◽  
H. E. Markus Meier ◽  
Kari Eilola

Abstract. Long-term oxygen and nutrient transports in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations with and without data assimilation covering the period 1970–1999 are carried out. Here, the weakly coupled scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate observed profiles in the reanalysis system. The reanalysis shows considerable improvement in the simulation of both oxygen and nutrient concentrations relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen-dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net transport (export minus import) of nutrients from the Baltic proper into the surrounding sub-basins (except the net phosphorus import from the Gulf of Riga and the net nitrogen import from the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are retained in this sub-basin. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.


2019 ◽  
Vol 76 (6) ◽  
pp. 1653-1665 ◽  
Author(s):  
Jens Olsson ◽  
Eglė Jakubavičiūtė ◽  
Olavi Kaljuste ◽  
Niklas Larsson ◽  
Ulf Bergström ◽  
...  

Abstract Declines in predatory fish in combination with the impact of climate change and eutrophication have caused planktivores, including three-spined stickleback (Gasterosteus aculeatus), to increase dramatically in parts of the Baltic Sea. Resulting impacts of stickleback on coastal and offshore foodwebs have been observed, highlighting the need for increased knowledge on its population characteristics. In this article, we quantify abundance, biomass, size structure, and spatial distribution of stickleback using data from the Swedish and Finnish parts of the Baltic International Acoustic Survey (BIAS) during 2001–2014. Two alternative methods for biomass estimation suggest an increase in biomass of stickleback in the Baltic Proper, stable or increasing mean size over time, and larger individuals toward the north. The highest abundance was found in the central parts of the Baltic Proper and Bothnian Sea. The proportion of stickleback biomass in the total planktivore biomass increased from 4 to 10% in the Baltic Proper and averaged 6% of the total planktivore biomass in the Bothnian Sea. In some years, however, stickleback biomass has ranged from half to almost twice that of sprat (Sprattus sprattus) in both basins. Given the recent population expansion of stickleback and its potential role in the ecosystem, we recommend that stickleback should be considered in future monitoring programmes and in fisheries and environmental management of the Baltic Sea.


2020 ◽  
Author(s):  
Hedi Kanarik ◽  
Laura Tuomi ◽  
Jan-Victor Björkqvist ◽  
Tuomas Kärnä ◽  
Antti Westerlund

<p>Currents in the Baltic Sea are relatively weak and are thus often expected to have a negligible effect on sea surface waves. To evaluate the magnitude of wave–current interactions in the Baltic Sea, we ran the third generation wave model WAM with and without surface currents from the 3D hydrodynamical model Nemo4. The results showed that the currents have a notable effect on wave field only on rare occasions and that the effects are largest in coastal areas of the Baltic Proper, most notably in the western Gotland Basin, and the Gulf of Finland. The simulations showed that the currents in the Baltic Sea can cause differences of significant wave height up to tens of centimeters. More notable effect was the change in the peak of the wave spectrum from swell to wind driven waves and vice versa in some occasions. In our study w<span>e mostly focus on the events of strong wave–current interactions in the northern Baltic Proper and Gulf of Finland as we have measured wave spectra available from these locations. From the comparison with wave buoy measurements we see that implementing surface currents</span> <span>slightly improves the </span><span>m</span><span>odelled peak period in the Gulf of Finland.</span> <span>The Gulf of Finland is of special interest also because a group of ADCP’s were installed close to the wave buoy. The current measurements from these devices can therefore be used to evaluate the accuracy of the currents in the hydrodynamical model. </span></p>


2020 ◽  
Author(s):  
Katja Kuhwald ◽  
Philipp Held ◽  
Florian Gausepohl ◽  
Jens Schneider von Deimling ◽  
Natascha Oppelt

<p>Seagrass meadows cover large benthic areas of the Baltic Sea, but eutrophication and climate change imply declining seagrass coverage. Apart from acoustic methods and traditional diver mappings, optical remote sensing techniques allow for mapping seagrass. Optical satellite analyses of seagrass mapping may supplement acoustic methods in shallow coastal waters with observations that are more frequent and have a larger spatial coverage.</p><p>In the clear Greek Mediterranean Sea, Sentinel-2 was already applied successfully to detect bathymetry and seagrass meadows. We are now testing whether Sentinel-2 data are also suitable for analysing the sublittoral in the turbid waters of the Baltic Sea. We focus on an extensive shallow water area near Kiel/Germany. Based on Sentinel-2 data, we analyse water depth and differentiate between seagrass covered and bare sandy ground. We derive these parameters using empirical and process-based models. First results show that Sentinel-2 allows to determine water depths up to 4 m (RMSE ~ 0.2 m). Comparisons with LiDAR water depths show that inaccuracies increase in overgrown areas. Our study also shows that the atmospheric correction algorithm influences sublittoral ground mappings with Sentinel-2 data. For instance, the absolute water depths of the process-based modelling differ up to 2.5 m on average depending on the atmospheric correction algorithm (ACOLITE, Sen2Cor, iCOR).</p><p>Comparing Sentinel-2 seagrass classifications with diver mappings and aerial imagery emphasises that empiric approaches provide plausible sublittoral ground classifications up to approximately 4 m water depth. Combining these results with seagrass mappings based on acoustic measurements (deeper than 4 m water) provides a synthesised sublittoral classification map of the study area up to the present growth limit of seagrass (~ 7 m in the study area).</p><p>The Baltic Sea is considered as a very turbid environment, nevertheless we show that satellite-based remote sensing has a great potential for shedding light into the  "white ribbon". The spatial coverage and temporal resolution of the analysed Sentinel-2 data increases the knowledge about the occurrence of seagrass and its spatio-temporal dynamics. Nevertheless, the influence of the selected atmospheric correction approach on the results shows that further research in remote sensing is necessary to assess seagrass meadows reliably.</p>


2019 ◽  
Author(s):  
Martin Jakobsson ◽  
Christian Stranne ◽  
Matt O'Regan ◽  
Sarah L. Greenwood ◽  
Bo Gustafsson ◽  
...  

Abstract. Marine science and engineering commonly require reliable information about seafloor depth (bathymetry), e.g. for studies of ocean circulation, bottom habitats, fishing resources, sediment transport, geohazards and site selection for platforms and cables. Baltic Sea bathymetric properties are analysed here using the using the newly released Digital Bathymetric Model (DBM) by the European Marine Observation and Data Network (EMODnet). The analyses include hypsometry, volume, descriptive depth statistics, and km-scale seafloor ruggedness, i.e. terrain heterogeneity, for the Baltic Sea as a whole as well as for 17 sub-basins defined by the Baltic Marine Environment Protection Commission (HELCOM). We compare the new EMODnet DBM with IOWTOPO, the previously most widely used DBM of the Baltic Sea which has served as the primary gridded bathymetric resource in physical and environmental studies for nearly two decades. The area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper across the Åland Sea is specifically analysed in terms of depths and locations of critical bathymetric sills. The EMODnet DBM provides a bathymetric sill depth of 88 m at the northern side of the Åland Sea and 60 m at the southern side, differing from previously identified sill depths of 100 and 70 m respectively. High-resolution multibeam bathymetry acquired from this deep water exchange path, where vigorous bottom currents interacted with the seafloor, allows us to assess what we are missing in presently available DBMs in terms of physical characterisation and our ability to then interpret seafloor processes and highlights the need for continued work towards complete high-resolution mapping of the Baltic Sea seafloor.


2016 ◽  
Author(s):  
Ye Liu ◽  
H. E. Markus Meier ◽  
Kari Eilola

Abstract. The long-term oxygen and nutrient cycles in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations covering the period 1970–1999 are carried out with and without data assimilation, respectively. Here, the "weakly coupled" scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate the observed profiles in the reanalysis system. The simulation results show considerable improvements in both oxygen and nutrient concentrations in the reanalysis relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between subbasins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections, are calculated. Further, bottom areas of nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net exports of nutrients into the surrounding subbasins (except the phosphorus transport into the Gulf of Riga and the nitrogen transports into the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are buried in this subbasin. For the calculation of subbasin budgets, it is crucial where the lateral borders of the subbasins are located, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.


2021 ◽  
Author(s):  
Jens Murawski ◽  
Jun She ◽  
Vilnis Frishfelds

<p>Marine micro plastic is a growing problem, because of its ability to accumulate in the environment. Reliable data of drift patterns and accumulation zones are required to estimate environmental impacts on natural protected areas, spawning areas and vulnerable habitats. H2020 project CLAIM (Cleaning Litter by developing and Applying Innovative Methods) uses model based assessments to improve the knowledge on marine pathways, sources and sinks of land emitted plastic pollution. The assessment follows a systematic approach, to derive reliable emission values for coastal sources, and to model drift and deposition pattern of micro plastics from multiple sources: car tyres, cosmetic products. A 3D modelling tool has been developed, that includes all relevant key processes, i.e. currents and wave induced transport, biofilm growth on the particle surface, sinking and sedimentation. Core engine is the HBM ocean circulation model, which has been set-up for the Baltic Sea in high resolution of 900m. Multi-years-studies (2013-2019) were performed to evaluate seasonal drift pattern and accumulation zones. Highest micro plastic concentrations were found in coastal waters, near major release locations, but transport related offshore pattern can be found as well. These follow the major pathways of deeper sea transport, but are controlled by the seasonal dynamic of biofilm growth and sinking. We introduce the model and all relevant key processes. Seasonal drift pattern are discusses in detail. Validation results in the Gulf of Riga and the Gulf of Finland provide an overview of the quality of the model to predict the distribution of micro plastics. The study includes the assessment of mitigation scenarios, of 30% micro plastic load reductions. The impacts on the ocean levels of micro plastic concentrations are studied in detail.  </p><p> </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document