scholarly journals Structure of a Narrow Cold Front in the Boundary Layer: Observations versus Model Simulation

2012 ◽  
Vol 140 (8) ◽  
pp. 2497-2519 ◽  
Author(s):  
Victoria A. Sinclair ◽  
Sami Niemelä ◽  
Matti Leskinen

Abstract A narrow and shallow cold front that passed over Finland during the night 30–31 October 2007 is analyzed using model output and observations primarily from the Helsinki Testbed. The aim is to describe the structure of the front, especially within the planetary boundary layer, identify how this structure evolved, and determine the ability of a numerical model to correctly predict this structure. The front was shallow with a small (2.5–3 K) temperature decrease associated with it, which is attributed to the synoptic evolution of the cold front from a frontal wave on a mature, trailing cold front in a region of weak upper-level forcing and where the midtroposphere was strongly stratified. Within the boundary layer, the frontal surface was vertical and the frontal zone was narrow (<8 km). The small cross-front scale was probably a consequence of the weak frontolytical turbulent mixing occurring at night, at high latitudes, combined with strong, localized frontogenetic forcing driven by convergence. The model simulated the mesoscale evolution of the front well, but overestimated the width of the frontal zone. Within the boundary layer, the model adequately predicted the stratification and near-surface temperatures ahead of, and within, the frontal zone, but failed to correctly predict the thermal inversion that developed in the stably stratified postfrontal air mass. This case study highlights the complex structure of fronts both within the nocturnal boundary layer, and in a location far from regions of cyclogenesis, and hence the challenges that both forecasters and operational models face.

2019 ◽  
Vol 19 (9) ◽  
pp. 6535-6549 ◽  
Author(s):  
Bojan Škerlak ◽  
Stephan Pfahl ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Upper-level fronts are often associated with the rapid transport of stratospheric air along tilted isentropes to the middle or lower troposphere, where this air leads to significantly enhanced ozone concentrations. These plumes of originally stratospheric air can only occasionally be observed at the surface because (i) stable boundary layers prevent an efficient vertical transport down to the surface, and (ii) even if boundary layer turbulence were strong enough to enable this transport, the originally stratospheric air mass can be diluted by mixing, such that only a weak stratospheric signal can be recorded at the surface. Most documented examples of stratospheric air reaching the surface occurred in mountainous regions. This study investigates two such events, using a passive stratospheric air mass tracer in a mesoscale model to explore the processes that enable the transport down to the surface. The events occurred in early May 2006 in the Rocky Mountains and in mid-June 2006 on the Tibetan Plateau. In both cases, a tropopause fold associated with an upper-level front enabled stratospheric air to enter the troposphere. In our model simulation of the North American case, the strong frontal zone reaches down to 700 hPa and leads to a fairly direct vertical transport of the stratospheric tracer along the tilted isentropes to the surface. In the Tibetan Plateau case, however, no near-surface front exists and a reservoir of high stratospheric tracer concentrations initially forms at 300–400 hPa, without further isentropic descent. However, entrainment at the top of the very deep boundary layer (reaching to 300 hPa over the Tibetan Plateau) and turbulence within the boundary layer allows for downward transport of stratospheric air to the surface. Despite the strongly differing dynamical processes, stratospheric tracer concentrations at the surface reach peak values of 10 %–20 % of the imposed stratospheric value in both cases, corroborating the potential of deep stratosphere-to-troposphere transport events to significantly influence surface ozone concentrations in these regions.


2009 ◽  
Vol 137 (9) ◽  
pp. 3092-3109 ◽  
Author(s):  
Bradford S. Barrett ◽  
RenéD. Garreaud ◽  
Mark Falvey

Abstract The effects of the Andes Cordillera, the major mountain range in South America, on precipitation patterns of baroclinic systems approaching from the southeast Pacific remain largely unstudied. This study focuses on a case in late May 2008 when an upper-level trough and surface cold front produced widespread precipitation in central Chile. The primary goal was to analyze the physical mechanisms responsible for the structure and evolution of the precipitation. Weather Research and Forecasting (WRF) model simulations indicate that as an upper-level trough approached central Chile, midtropospheric flow below 700 hPa was blocked by the high topography and deflected poleward in the form of a barrier jet. This northerly jet had wind maxima in excess of 15 m s−1, was centered around 925 hPa, and extended westward 200 km from the mountains. It intersected the cold front, which approached from the south near the coast, thereby increasing convergence along the frontal surface, slowing its equatorward progress, and enhancing rainfall over central Chile. Another separate region of heavy precipitation formed over the upwind slopes of the cordillera. A trajectory analysis confirmed that the barrier jet moved low-level parcels from their origin in the moist southeast Pacific boundary layer to the coast. When model topography was reduced to twenty percent of its original height, the cold front advanced more rapidly to the northeast, generated less precipitation in central Chile between 33° and 36°S, and produced minimal orographic precipitation on the upwind Andean slopes. Based on these findings, the high topography appears responsible for not only orographic precipitation but also for substantially increasing precipitation totals over the central coast and valley.


2015 ◽  
Vol 8 (5) ◽  
pp. 2121-2148 ◽  
Author(s):  
R. Volkamer ◽  
S. Baidar ◽  
T. L. Campos ◽  
S. Coburn ◽  
J. P. DiGangi ◽  
...  

Abstract. Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2–O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km, 5–10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 × 1013 molec cm−2 (RF12) and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17) and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.


2019 ◽  
Author(s):  
Yucong Miao ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
Shuhua Liu

Abstract. Rapid urbanization and industrialization have led to deterioration of air quality in the Beijing-Tianjin-Hebei (BTH) region with high loadings of PM2.5. The heavy aerosol pollutions frequently occur in winter, closely in relation to the meteorological conditions. To unravel the complicated impacts of large-scale atmospheric forcing and the local-scale planetary boundary layer (PBL) characteristics on the pollution there, this study combined long-term observational data analyses, synoptic pattern classification, and meteorology-chemistry coupled simulations. During the winter of 2017 and 2018, Beijing, Langfang, Tianjin, and Tangshan often simultaneously experienced heavy PM2.5 pollution, accompanying with strong thermal inversion aloft. These concurrences of pollution in different cities were primarily regulated by the large-scale atmospheric processes. Using the principal component analysis with the geopotential height fields at the 850-hPa level during winter, the typical polluted synoptic pattern in BTH was identified. The pattern was featured by westerly winds from upstream mountainous regions. By inducing warm advections from the west, the thermal inversion aloft in the BTH could be enhanced, leading to shallow daytime PBLs and high near-surface PM2.5 concentrations. In addition, the aerosol may also modulate the PBL structure through its radiative effect, which was examined using numerical simulations. The aerosol radiative effect can significantly lower the boundary layer height in the afternoon through cooling the surface layer and heating the upper part of PBL. Thus, more aerosols could be accumulated in the lower portion of PBL, bringing about heavy pollution in the BTH. This study has revealed the important roles played by the meteorology-aerosol interaction on the air quality.


2013 ◽  
Vol 807-809 ◽  
pp. 106-112
Author(s):  
Min Jin Ma

Extremely high atmospheric boundary layer is observed during 29 May to 3 June 2000 over Dunhuang in Northwest China. Average height of the atmospheric boundary layer is more than 3500m during the observation. Environmental conditions such as wind related to the extremely high atmospheric boundary layer are analysed combined with numerical simulation. Of the first three days in the observation there are low-level jets and large wind shear near surface observed on 29 and 31 May. Wind speed variation in these three days agrees well with variation of the atmospheric boundary layer heights. WRF model is applied to simulate atmospheric boundary layer height and investigate wind characteristics. The model simulation ability is checked and the simulation results find a significant west jet exists over northern Dunhuang. The momentum from the jet transfers downward to Dunhuang to supply kinetic energy developing atmospheric boundary layer. At last two sensitive experiments are performed to study wind effect on the height. The sensitive experiments demonstrate that wind as a lateral boundary parameter heavily influences the atmospheric boundary layer development.


2019 ◽  
Vol 19 (9) ◽  
pp. 5853-5879 ◽  
Author(s):  
Stefan F. Schreier ◽  
Andreas Richter ◽  
John P. Burrows

Abstract. Nitrogen dioxide (NO2), produced as a result of fossil fuel combustion, biomass burning, lightning, and soil emissions, is a key urban and rural tropospheric pollutant. In this case study, ground-based remote sensing has been coupled with the in situ network in Vienna, Austria, to investigate NO2 distributions in the planetary boundary layer. Near-surface and path-averaged NO2 mixing ratios within the metropolitan area of Vienna are estimated from car DOAS (differential optical absorption spectroscopy) zenith-sky and tower DOAS horizon observations. The latter configuration is innovative in the sense that it obtains horizontal measurements at more than a hundred different azimuthal angles – within a 360∘ rotation taking less than half an hour. Spectral measurements were made with a DOAS instrument on nine days in April, September, October, and November 2015 in the zenith-sky mode and on five days in April and May 2016 in the off-axis mode. The analysis of tropospheric NO2 columns from the car measurements and O4 normalized NO2 path averages from the tower observations provide interesting insights into the spatial and temporal NO2 distribution over Vienna. Integrated column amounts of NO2 from both DOAS-type measurements are converted into mixing ratios by different methods. The estimation of near-surface NO2 mixing ratios from car DOAS tropospheric NO2 vertical columns is based on a linear regression analysis including mixing height and other meteorological parameters that affect the dilution and reactivity in the planetary boundary layer – a new approach for such conversion. Path-averaged NO2 mixing ratios are calculated from tower DOAS NO2 slant column densities by taking into account topography and geometry. Overall, lap averages of near-surface NO2 mixing ratios obtained from car DOAS zenith-sky measurements, around a circuit in Vienna, are in the range of 3.8 to 26.1 ppb and in good agreement with values obtained from in situ NO2 measurements for days with wind from the southeast. Path-averaged NO2 mixing ratios at 160 m above the ground as derived from the tower DOAS measurements are between 2.5 and 9 ppb on two selected days with different wind conditions and pollution levels and show similar spatial distribution as seen in the car DOAS zenith-sky observations. We conclude that the application of the two methods to obtain near-surface and path-averaged NO2 mixing ratios is promising for this case study.


2018 ◽  
Author(s):  
Stefan F. Schreier ◽  
Andreas Richter ◽  
John P. Burrows

Abstract. Nitrogen dioxide (NO2), produced as a result of fossil fuel combustion, biomass burning, lightning, and soil emissions, is a key urban and rural tropospheric pollutant. In this case study, ground-based remote sensing has been coupled with the in situ network in Vienna, Austria, to investigate NO2 distributions in the planetary boundary layer. Near-surface and path-averaged NO2 mixing ratios within the metropolitan area of Vienna are estimated from car DOAS (Differential Optical Absorption Spectroscopy) zenith-sky and tower DOAS horizon observations. The latter configuration is innovative in the sense that it obtains horizontal measurements at more than hundred different azimuthal angles – within a 360° rotation taking less than half an hour. Spectral measurements were made with a DOAS instrument on nine days in April, September, October, and November 2015 in the zenith-sky mode and on five days in April and May 2016 in the off-axis mode. The analysis of tropospheric NO2 columns from the car measurements and O4 normalized NO2 path averages from the tower observations provide interesting insights into the spatial and temporal NO2 distribution over Vienna. Integrated column amounts of NO2 from both DOAS-type measurements are converted into mixing ratios by different methods. The estimation of near-surface NO2 mixing ratios from car DOAS tropospheric NO2 vertical columns is based on a linear regression analysis including mixing-height and other meteorological parameters that affect the dilution and reactivity in the planetary boundary layer – a new approach for such conversion. Path-averaged NO2 mixing ratios are calculated from tower DOAS NO2 slant column densities by taking into account topography and geometry. Overall, lap averages of near-surface NO2 mixing ratios obtained from car DOAS zenith-sky measurements, around a circuit in Vienna, are in the range of 3.8 to 26.2 ppb and in good agreement with values obtained from in situ NO2 measurements for days with wind from the Southeast. Path-averaged NO2 mixing ratios at 160 m above the ground as derived from the tower DOAS measurements are between 2.5 and 9 ppb on two selected days with different wind conditions and pollution levels and show similar spatial distribution as seen in the car DOAS zenith-sky observations. We conclude that the application of the two methods to obtain near-surface and path-averaged NO2 mixing ratios is promising for this case study.


2008 ◽  
Vol 55 ◽  
pp. 127-146 ◽  
Author(s):  
David M. Schultz ◽  
Paul J. Roebber

Abstract Over 50 yr have passed since the publication of Sanders' 1955 study, the first quantitative study of the structure and dynamics of a surface cold front. The purpose of this chapter is to reexamine some of the results of that study in light of modern methods of numerical weather prediction and diagnosis. A simulation with a resolution as high as 6-km horizontal grid spacing was performed with the fifth-generation-Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5), given initial and lateral boundary conditions from the National Centers for Environmental Precipitation-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project data from 17 to 18 April 1953. The MM5 produced a reasonable simulation af the front, albeit its strength was not as intense and its movement was not as fast as was analyzed by Sanders. The vertical structure of the front differed from that analyzed by Sanders in several significant ways. First, the strongest horizontal temperature gradient associated with the cold front in the simulation occurred above a surface-based inversion, not at the earth's surface. Second, the ascent plume at the leading edge of the front was deeper and more intense than that analyzed by Sanders. The reason was an elevated mixed layer that had moved over the surface cold front in the simulation, allowing a much deeper vertical circulation than was analyzed by Sanders. This structure is similar to that of Australian cold fronts with their deep, well-mixed, prefrontal surface layer. These two differences between the model simulation and the analysis by Sanders may be because upper-air data from Fort Worth, Texas, was unavailable to Sanders. Third, the elevated mixed layer also meant that isentropes along the leading edge of the front extended vertically. Fourth, the field of frontogenesis of the horizontal temperature gradient calculated from the three-dimensional wind differed in that the magnitude of the maximum of the deformation term was larger than the magnitude of the maximum of the tilting term in the simulation, in contrast to Sanders' analysis and other previously published cases. These two discrepancies may be attributable to the limited horizontal resolution of the data that Sanders used in constructing his cross section. Last, a deficiency of the model simulation was that the postfrontal surface superadiabatic layer in the model did not match the observed well-mixed boundary layer. This result raises the question of the origin of the well-mixed postfrontal boundary layer behind cold fronts. To address this question, an additional model simulation without surface fluxes was performed, producing a well-mixed, not superadiabatic, layer. This result suggests that surface fluxes were not necessary for the development of the well-mixed layer, in agreement with previous research. Analysis of this event also amplifies two research themes that Sanders returned to later in his career, First, a prefrontal wind shift occurred in both the observations and model simulation at stations in western Oklahoma. This prefrontal wind shift was caused by a lee cyclone departing the leeward slopes of the Rockies slightly equatorward of the cold front, rather than along the front as was the case farther eastward. Sanders' later research showed how the occurrence of these prefrontal wind shifts leads to the weakening of fronts. Second, this study shows the advantage of using surface potential temperature, rather than surface temperature, for determining the locations of the surface fronts on sloping terrain.


2008 ◽  
Vol 136 (4) ◽  
pp. 1475-1491 ◽  
Author(s):  
Roger M. Wakimoto ◽  
Hanne V. Murphey

Abstract An analysis of a cold front over the eastern Atlantic Ocean based on airborne Doppler wind syntheses and dropsonde data is presented. The focus and unique aspect of this study is a segment of the front that was near the center of the cyclone. The dual-Doppler wind synthesis of the frontal zone combined with an average dropsonde spacing of ∼30 km covers a total distance of >450 km in the cross-frontal direction. The finescale resolution and areal coverage of the dataset are believed to be unprecedented. The cold front was characterized by a distinct wind shift and a strong horizontal temperature gradient. The latter was most intense aloft and not at the surface, in contrast to the classical paradigm of surface cold fronts. The shear of the alongfront component of the wind was relatively uniform as a function of height within the frontal zone. This observation is contrary to studies suggesting that frontal zones decrease in intensity above the surface. The surface convergence within the frontal zone was weak. This may have been related to the closeness of the analysis region to the surface low pressure. The prefrontal low-level jet and the upper-level polar jet were both shown to be supergeostrophic based on the analysis of the geopotential height field. It is believed that a major contributing factor to the former was the isallobaric wind from the large pressure tendencies associated with the moving cyclone. A dry pocket accompanied by descending air was noted out ahead of the low-level jet. This pocket produced a region of potential instability that could have supported deep convection, although none was observed on this day. The vertical structure of the front revealed couplets of potential vorticity that appeared to be the result of diabatic heat sources from condensation. The diabatic effect in the frontogenesis equation was the dominant term, exceeding the combined effects of the confluence and tilting terms. As a result, an alternating pattern of frontogenesis–frontolysis developed along the flanks of the maxima of diabatic heating. This study highlights the importance of taking diabatic heating into account even in the absence of deep convection.


Sign in / Sign up

Export Citation Format

Share Document