scholarly journals Integrated impacts of synoptic forcing and aerosol radiative effect on boundary layer and pollution in the Beijing-Tianjin-Hebei region, China

2019 ◽  
Author(s):  
Yucong Miao ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
Shuhua Liu

Abstract. Rapid urbanization and industrialization have led to deterioration of air quality in the Beijing-Tianjin-Hebei (BTH) region with high loadings of PM2.5. The heavy aerosol pollutions frequently occur in winter, closely in relation to the meteorological conditions. To unravel the complicated impacts of large-scale atmospheric forcing and the local-scale planetary boundary layer (PBL) characteristics on the pollution there, this study combined long-term observational data analyses, synoptic pattern classification, and meteorology-chemistry coupled simulations. During the winter of 2017 and 2018, Beijing, Langfang, Tianjin, and Tangshan often simultaneously experienced heavy PM2.5 pollution, accompanying with strong thermal inversion aloft. These concurrences of pollution in different cities were primarily regulated by the large-scale atmospheric processes. Using the principal component analysis with the geopotential height fields at the 850-hPa level during winter, the typical polluted synoptic pattern in BTH was identified. The pattern was featured by westerly winds from upstream mountainous regions. By inducing warm advections from the west, the thermal inversion aloft in the BTH could be enhanced, leading to shallow daytime PBLs and high near-surface PM2.5 concentrations. In addition, the aerosol may also modulate the PBL structure through its radiative effect, which was examined using numerical simulations. The aerosol radiative effect can significantly lower the boundary layer height in the afternoon through cooling the surface layer and heating the upper part of PBL. Thus, more aerosols could be accumulated in the lower portion of PBL, bringing about heavy pollution in the BTH. This study has revealed the important roles played by the meteorology-aerosol interaction on the air quality.

2020 ◽  
Vol 20 (10) ◽  
pp. 5899-5909 ◽  
Author(s):  
Yucong Miao ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
Shuhua Liu

Abstract. Rapid urbanization and industrialization have led to deterioration of air quality in the Beijing–Tianjin–Hebei (BTH) region due to high loadings of PM2.5. Heavy aerosol pollution frequently occurs in winter, in close relation to the planetary boundary layer (PBL) meteorology. To unravel the physical processes that influence PBL structure and aerosol pollution in BTH, this study combined long-term observational data analyses, synoptic pattern classification, and meteorology–chemistry coupled simulations. During the winter of 2017 and 2018, Beijing and Tangshan often experienced heavy PM2.5 pollution simultaneously, accompanied by strong thermal inversion aloft. These concurrences of pollution in different cities were primarily regulated by the large-scale synoptic conditions. Using principal component analysis with geopotential height fields at the 850 hPa level during winter, two typical synoptic patterns associated with heavy pollution in BTH were identified. One pattern is characterized by a southeast-to-north pressure gradient across BTH, and the other is associated with high pressure in eastern China. Both synoptic types feature warmer air temperature at 1000 m a.g.l., which could suppress the development of the PBL. Under these unfavorable synoptic conditions, aerosols can modulate PBL structure through the radiative effect, which was examined using numerical simulations. The aerosol radiative effect can significantly lower the daytime boundary layer height through cooling the surface layer and heating the upper part of the PBL, leading to the deterioration of air quality. This PBL–aerosol feedback is sensitive to the aerosol vertical structure, which is more effective when the synoptic pattern can distribute more aerosols to the upper PBL.


2017 ◽  
Vol 17 (4) ◽  
pp. 3097-3110 ◽  
Author(s):  
Yucong Miao ◽  
Jianping Guo ◽  
Shuhua Liu ◽  
Huan Liu ◽  
Zhanqing Li ◽  
...  

Abstract. Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.


2007 ◽  
Vol 88 (8) ◽  
pp. 1215-1228 ◽  
Author(s):  
William I. Gustafson ◽  
L. Ruby Leung

Assessing future changes in air quality using downscaled climate scenarios is a relatively new application of the dynamical downscaling technique. This article compares and evaluates two downscaled simulations for the United States made using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model with the goal of understanding how errors in the downscaled climate simulations may introduce uncertainty in air quality assessment. The two downscaled simulations were driven by boundary conditions from the NCEP–NCAR global reanalysis and a global climate simulation generated by the Goddard Institute for Space Studies global circulation model, respectively. Comparisons of the model runs are made against the boundary layer and circulation characteristics of the North American Regional Reanalysis, and also against observed precipitation. The relative dependence of different simulated quantities on regional forcing, model parameterizations, and large-scale circulation provides a framework to understand similarities and differences between model simulations. Results show significant improvements in the downscaled diurnal wind patterns, in response to the complex orography, that are important for air quality assessment. Evaluation of downscaled boundary layer depth and winds, precipitation, and large-scale circulation shows larger biases related to model physics and biases in the GCM large-scale conditions. Based on the comparisons, recommendations are made to improve the utility of downscaled scenarios for air quality assessment.


Atmosphere ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Xiang Zheng ◽  
Jun Qin ◽  
Shengwen Liang ◽  
Zhengxuan Yuan ◽  
Yassin Mbululo

Ambient air quality monitoring data and radar tracking sonde data were used to study the atmospheric boundary layer structure (ABLS) and its changing characteristics over Wuhan. The boundary layer structure index (BLSI), which can effectively describe the ABLS, was accordingly developed and its ability to describe the near-surface air quality was analyzed. The results can be summarized as follows. (1) An analysis of the ABLS during seriously polluted cases revealed that the ABLS was usually dry and warm with a small ventilation index (VI); meanwhile, the ABLS during clean cases was usually wet and cold with a large VI. (2) The correlation between the air quality and BLSI at 100~300 m was good and passed the confidence level limit at 99%. Moreover, the correlation coefficient increased with the altitude at 10~250 m and showed a downward trend at 250~500 m. The correlation between the BLSI at 250 m and the ground air quality was the most significant (r = 0.312), indicating that the layer ranging from 0 to 250 m is essential for determining the ground air quality. (3) The BLSI considers both the vertical diffusion capability and horizontal removal capability of the atmosphere. Therefore, it is highly capable of describing the ABLS and the ground air quality.


2020 ◽  
Author(s):  
Benjamin Schumacher ◽  
Marwan Katurji ◽  
Jiawei Zhang

<p>The evolution of micrometeorological measurements has been recently manifested by developments in methodological and analytical techniques using spatial surface brightness temperature captured by infrared cameras (Schumacher et al. 2019, Katurji and Zawar-Reza 2016). The Thermal Image Velocimetry (TIV) method can now produce accurate 2D advection-velocities using high speed (>20Hz) infrared imagery (Inagaki 2013, Schumacher 2019). However, to further develop TIV methods and achieve a novel micrometeorological measurement technique, all scales of motion within the boundary layer need to be captured.</p><p>Spatial observations of multi-frequency and multi-scale temperature perturbations are a result from the turbulent interaction of the overlying atmosphere and the surface. However, these surface signatures are connected to the larger scales of the atmospheric boundary layer (McNaughton 2002, Träumner 2015). When longer periods (a few hours to a few days) of spatial surface brightness temperatures are observed, the larger scale information needs to be accounted for to build a comprehensive understanding of surface-atmospheric spatial turbulent interactions. Additionally, the time-frequency decomposition of brightness temperature perturbations shows longer periods of 4-15 minutes superimposed over shorter periods of ~ 4–30 seconds. This suggests that that boundary layer dynamic scales (of longer periods) can influence brightness temperature perturbations on the local turbulent scale. An accurate TIV algorithm needs to account for all scales of motion when analysing the time-space variability of locally observed spatial brightness temperature patterns.</p><p>To analyse these propositions temporally high resolved geostationary satellite infrared data from the Himawari 8 satellite was compared to near-surface and high speed (20 Hz) measured air and brightness temperature using thermocouple measurements and infrared cameras. The satellite provides a temporal resolution of 10-minutes and a horizontal resolution of 2 by 2 km per pixel and therefore captures the atmospheric meso γ and micro α scale which signals are usually active for ~10 minutes to < 12 hours. Moreover, the Himawari 8 brightness temperature was used to create the near-surface mean velocity field using TIV. Afterwards, the velocity field was compared to the in-situ measured wind velocity over several days during January 2019.</p><p>The results show that the atmospheric forcing from the micro α scale to lower atmospheric scales has a major impact on the near-surface temperature over several minutes. A significant (p-value: 0.02) positive covariance between the Himawari 8 measurement and the local measured temperature 1.5 cm above the ground on a 10 minute average, specifically concerning cooling and heating patterns, has been found.</p><p>Further analysis demonstrates that the retrieved near-surface 2-D velocity field calculated from the Himawari 8 brightness temperature perturbations is correctly representing the mean velocity. This finding allows the classification of meso-scale atmospheric forcing and its direct connection to local scale turbulent 2-D velocity measurements. This extends the TIV algorithm by a multi-scale component which allows to address inter-scale boundary layer analysis from a new point of view. In respect to the current findings a new experiment will focus on the repeated induced local velocity patterns from large scale forcing which will be measured through the surface brightness temperature.</p>


2020 ◽  
Author(s):  
Jan Weinkaemmerer ◽  
Ivan Bašták Ďurán ◽  
Jürg Schmidli

<p>In the convective boundary layer over mountainous regions, the mean values and the fluxes of quantities like heat, mass, and momentum are strongly influenced by thermally induced flows. Several studies have pointed out that the enhanced warming of the air inside a valley can be explained by the valley-volume effect whereas the cross-valley circulation leads to a net export of heat to the free atmosphere. We are interested in the influence of an upper-level wind on the local circulations and the boundary-layer properties, both locally and in terms of the horizontal mean, as this aspect has not yet received much attention. LES are carried out over idealized, two-dimensional topographies using the CM1 numerical model. For the analysis, turbulent, mean-circulation, and large-scale contributions are systematically distinguished. Also, budget analyses are performed for the turbulence kinetic energy and the turbulent heat and mass flux. Based on the first results for periodic topographies, no crucial influence on the horizontally averaged heat-flux and temperature profile can be observed, even though the flow pattern of the thermal wind is qualitatively changed. In addition to that, the impact on moisture transport will be evaluated and simulations over different topographies as well as for different atmospheric conditions and surface properties will be presented.</p>


2005 ◽  
Vol 18 (7) ◽  
pp. 934-951 ◽  
Author(s):  
Yuqing Wang ◽  
Shang-Ping Xie ◽  
Bin Wang ◽  
Haiming Xu

Abstract A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary layer stratocumulus clouds to the south. In a sensitivity experiment with the radiative effect of liquid clouds south of the equator over the eastern Pacific artificially removed, boundary layer clouds south of the equator almost disappear and precipitation in the ITCZ is reduced by 15%–20%, indicating that the stratocumulus clouds over the southeast Pacific have both local and cross-equatorial effects. Examination of the differences between the control and sensitivity experiments indicates that clouds exert a net diabatic cooling in the inversion layer. In response to this cloud-induced cooling, an in situ anomalous high pressure system develops in the boundary layer and an anomalous shallow meridional circulation develops in the lower troposphere over the equatorial eastern Pacific. At the lower branch of this shallow circulation, anomalous boundary layer southerlies blow from the boundary layer high toward the northern ITCZ where the air ascends. An anomalous returning flow (northerly) just above the cloud layer closes the shallow circulation. This low-level anomalous shallow circulation enhances the subsidence over the southeast Pacific above the cloud layer, helping to maintain boundary layer clouds and temperature inversion there. Meanwhile, the strengthened cross-equatorial flow near the surface enhances moisture convergence and convection in the ITCZ north of the equator. This in turn strengthens the local, deep Hadley circulation and hence the large-scale subsidence and boundary layer clouds over the southeast Pacific. This positive feedback therefore enhances the interhemispheric climate asymmetry over the tropical eastern Pacific.


2020 ◽  
pp. 105348
Author(s):  
Cheng Liu ◽  
Jianping Huang ◽  
Xinyu Tao ◽  
Lichen Deng ◽  
Xiaozhen Fang ◽  
...  

2012 ◽  
Vol 51 (3) ◽  
pp. 583-597 ◽  
Author(s):  
Warren Helgason ◽  
John W. Pomeroy

AbstractWithin mountainous regions, estimating the exchange of sensible heat and water vapor between the surface and the atmosphere is an important but inexact endeavor. Measurements of the turbulence characteristics of the near-surface boundary layer in complex mountain terrain are relatively scarce, leading to considerable uncertainty in the application of flux-gradient techniques for estimating the surface turbulent heat and mass fluxes. An investigation of the near-surface boundary layer within a 7-ha snow-covered forest clearing was conducted in the Kananaskis River valley, located within the Canadian Rocky Mountains. The homogeneous measurement site was characterized as being relatively calm and sheltered; the wind exhibited considerable unsteadiness, however. Frequent wind gusts were observed to transport turbulent energy into the clearing, affecting the rate of energy transfer at the snow surface. The resulting boundary layer within the clearing exhibited perturbations introduced by the surrounding topography and land surface discontinuities. The measured momentum flux did not scale with the local aerodynamic roughness and mean wind speed profile, but rather was reflective of the larger-scale topographical disturbances. The intermittent nature of the flux-generating processes was evident in the turbulence spectra and cospectra where the peak energy was shifted to lower frequencies as compared with those observed in more homogeneous flat terrain. The contribution of intermittent events was studied using quadrant analysis, which revealed that 50% of the sensible and latent heat fluxes was contributed from motions that occupied less than 6% of the time. These results highlight the need for caution while estimating the turbulent heat and mass fluxes in mountain regions.


2016 ◽  
Author(s):  
Yucong Miao ◽  
Jianping Guo ◽  
Shuhua Liu ◽  
Huan Liu ◽  
Zhanqing Liu ◽  
...  

Abstract. Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 μm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925-hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in further suppression of the PBL and deteriorating aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.


Sign in / Sign up

Export Citation Format

Share Document