scholarly journals A GSI-Based Coupled EnSRF–En3DVar Hybrid Data Assimilation System for the Operational Rapid Refresh Model: Tests at a Reduced Resolution

2014 ◽  
Vol 142 (10) ◽  
pp. 3756-3780 ◽  
Author(s):  
Yujie Pan ◽  
Kefeng Zhu ◽  
Ming Xue ◽  
Xuguang Wang ◽  
Ming Hu ◽  
...  

Abstract A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar) data assimilation (DA) system is developed for the operational Rapid Refresh (RAP) forecasting system. The En3DVar hybrid system employs the extended control variable method, and is built on the NCEP operational gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) framework. It is coupled with an EnSRF system for RAP, which provides ensemble perturbations. Recursive filters (RF) are used to localize ensemble covariance in both horizontal and vertical within the En3DVar. The coupled En3DVar hybrid system is evaluated with 3-h cycles over a 9-day period with active convection. All conventional observations used by operational RAP are included. The En3DVar hybrid system is run at ⅓ of the operational RAP horizontal resolution or about 40-km grid spacing, and its performance is compared to parallel GSI 3DVar and EnSRF runs using the same datasets and resolution. Short-term forecasts initialized from the 3-hourly analyses are verified against sounding and surface observations. When using equally weighted static and ensemble background error covariances and 40 ensemble members, the En3DVar hybrid system outperforms the corresponding GSI 3DVar and EnSRF. When the recursive filter coefficients are tuned to achieve a similar height-dependent localization as in the EnSRF, the En3DVar results using pure ensemble covariance are close to EnSRF. Two-way coupling between EnSRF and En3DVar did not produce noticeable improvement over one-way coupling. Downscaled precipitation forecast skill on the 13-km RAP grid from the En3DVar hybrid is better than those from GSI 3DVar analyses.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Chien-Ben Chou ◽  
Huei-Ping Huang

This work assesses the effects of assimilating atmospheric infrared sounder (AIRS) observations on typhoon prediction using the three-dimensional variational data assimilation (3DVAR) and forecasting system of the weather research and forecasting (WRF) model. Two major parameters in the data assimilation scheme, the spatial decorrelation scale and the magnitude of the covariance matrix of the background error, are varied in forecast experiments for the track of typhoon Sinlaku over the Western Pacific. The results show that within a wide parameter range, the inclusion of the AIRS observation improves the prediction. Outside this range, notably when the decorrelation scale of the background error is set to a large value, forcing the assimilation of AIRS data leads to degradation of the forecast. This illustrates how the impact of satellite data on the forecast depends on the adjustable parameters for data assimilation. The parameter-sweeping framework is potentially useful for improving operational typhoon prediction.


2014 ◽  
Vol 142 (5) ◽  
pp. 1852-1873 ◽  
Author(s):  
Eric Wattrelot ◽  
Olivier Caumont ◽  
Jean-François Mahfouf

AbstractThis paper presents results from radar reflectivity data assimilation experiments with the nonhydrostatic limited-area model Application of Research to Operations at Mesoscale (AROME) in an operational context. A one-dimensional (1D) Bayesian retrieval of relative humidity profiles followed by a three-dimensional variational data assimilation (3D-Var) technique is adopted. Several preprocessing procedures of raw reflectivity data are presented and the use of the nonrainy signal in the assimilation is widely discussed and illustrated. This two-step methodology allows the authors to build up a screening procedure that takes into account the evaluation of the results from the 1D Bayesian retrieval. In particular, the 1D retrieval is checked by comparing a pseudoanalyzed reflectivity to the observed reflectivity. Additionally, a physical consistency between the reflectivity innovations and the 1D relative humidity increments is imposed before assimilating relative humidity pseudo-observations with other observations. This allows the authors to counteract the difficulty of the current 3D-Var system to correct strong differences between model and observed clouds from the crude specification of background-error covariances. Assimilation experiments of radar reflectivity data in a preoperational configuration are first performed over a 1-month period. Positive impacts on short-term precipitation forecast scores are systematically found. The evaluation shows improvements on the analysis and also on objective conventional forecast scores, in particular for the model wind field up to 12 h. A case study for a specific precipitating system demonstrates the capacity of the method for improving significantly short-term forecasts of organized convection.


2017 ◽  
Vol 145 (10) ◽  
pp. 4205-4225 ◽  
Author(s):  
Ming Hu ◽  
Stanley G. Benjamin ◽  
Therese T. Ladwig ◽  
David C. Dowell ◽  
Stephen S. Weygandt ◽  
...  

The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range model forecast system running operationally at NOAA/National Centers for Environmental Prediction (NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper documents the application of the GSI three-dimensional hybrid ensemble–variational assimilation option to the RAP high-resolution, hourly cycling system and shows the skill improvements of 1–12-h forecasts of upper-air wind, moisture, and temperature over the purely three-dimensional variational analysis system. Use of perturbation data from an independent global ensemble, the Global Data Assimilation System (GDAS), is demonstrated to be very effective for the regional RAP hybrid assimilation. In this paper, application of the GSI-hybrid assimilation for the RAP is explained. Results from sensitivity experiments are shown to define configurations for the operational RAP version 2, the ratio of static and ensemble background error covariance, and vertical and horizontal localization scales for the operational RAP version 3. Finally, a 1-week RAP experiment from a summer period was performed using a global ensemble from a winter period, suggesting that a significant component of its multivariate covariance structure from the ensemble is independent of time matching between analysis time and ensemble valid time.


2008 ◽  
Vol 136 (3) ◽  
pp. 945-963 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue

Abstract A new efficient dual-resolution (DR) data assimilation algorithm is developed based on the ensemble Kalman filter (EnKF) method and tested using simulated radar radial velocity data for a supercell storm. Radar observations are assimilated on both high-resolution and lower-resolution grids using the EnKF algorithm with flow-dependent background error covariances estimated from the lower-resolution ensemble. It is shown that the flow-dependent and dynamically evolved background error covariances thus estimated are effective in producing quality analyses on the high-resolution grid. The DR method has the advantage of being able to significantly reduce the computational cost of the EnKF analysis. In the system, the lower-resolution ensemble provides the flow-dependent background error covariance, while the single-high-resolution forecast and analysis provides the benefit of higher resolution, which is important for resolving the internal structures of thunderstorms. The relative smoothness of the covariance obtained from the lower 4-km-resolution ensemble does not appear to significantly degrade the quality of analysis. This is because the cross covariance among different variables is of first-order importance for “retrieving” unobserved variables from the radar radial velocity data. For the DR analysis, an ensemble size of 40 appears to be a reasonable choice with the use of a 4-km horizontal resolution in the ensemble and a 1-km resolution in the high-resolution analysis. Several sensitivity tests show that the DR EnKF system is quite robust to different observation errors. A 4-km thinned data resolution is a compromise that is acceptable under the constraint of real-time applications. A data density of 8 km leads to a significant degradation in the analysis.


2017 ◽  
Vol 14 ◽  
pp. 187-194 ◽  
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Claudio Transerici ◽  
Stefano Dietrich

Abstract. This study investigates the impact of the assimilation of total lightning data on the precipitation forecast of a numerical weather prediction (NWP) model. The impact of the lightning data assimilation, which uses water vapour substitution, is investigated at different forecast time ranges, namely 3, 6, 12, and 24 h, to determine how long and to what extent the assimilation affects the precipitation forecast of long lasting rainfall events (> 24 h). The methodology developed in a previous study is slightly modified here, and is applied to twenty case studies occurred over Italy by a mesoscale model run at convection-permitting horizontal resolution (4 km). The performance is quantified by dichotomous statistical scores computed using a dense raingauge network over Italy. Results show the important impact of the lightning assimilation on the precipitation forecast, especially for the 3 and 6 h forecast. The probability of detection (POD), for example, increases by 10 % for the 3 h forecast using the assimilation of lightning data compared to the simulation without lightning assimilation for all precipitation thresholds considered. The Equitable Threat Score (ETS) is also improved by the lightning assimilation, especially for thresholds below 40 mm day−1. Results show that the forecast time range is very important because the performance decreases steadily and substantially with the forecast time. The POD, for example, is improved by 1–2 % for the 24 h forecast using lightning data assimilation compared to 10 % of the 3 h forecast. The impact of the false alarms on the model performance is also evidenced by this study.


2007 ◽  
Vol 7 (3) ◽  
pp. 8309-8332 ◽  
Author(s):  
T. Niu ◽  
S. L. Gong ◽  
G. F. Zhu ◽  
H. L. Liu ◽  
X. Q. Hu ◽  
...  

Abstract. A data assimilation system (DAS) was developed for the Chinese Unified Atmospheric Chemistry Environment – Dust (CUACE/Dust) forecast system and applied in the operational forecasts of sand and dust storm (SDS) in spring 2006. The system is based on a three dimensional variational method (3D-Var) and uses extensively the measurements of surface visibility and dust loading retrieval from the Chinese geostationary satellite FY-2C. The results show that a major improvement to the capability of CUACE/Dust in forecasting the short-term variability in the spatial distribution and intensity of dust concentrations has been achieved, especially in those areas far from the source regions. The seasonal mean Threat Score (TS) over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the data assimilation system, a 41% enhancement. The assimilation results usually agree with the dust loading retrieved from FY-2C and visibility distribution from surface meteorological stations, which indicates that the 3D-Var method is very powerful for the unification of observation and numerical modeling results.


2019 ◽  
Vol 12 (9) ◽  
pp. 4031-4051 ◽  
Author(s):  
Shizhang Wang ◽  
Zhiquan Liu

Abstract. A reflectivity forward operator and its associated tangent linear and adjoint operators (together named RadarVar) were developed for variational data assimilation (DA). RadarVar can analyze both rainwater and ice-phase species (snow and graupel) by directly assimilating radar reflectivity observations. The results of three-dimensional variational (3D-Var) DA experiments with a 3 km grid mesh setting of the Weather Research and Forecasting (WRF) model showed that RadarVar was effective at producing an analysis of reflectivity pattern and intensity similar to the observed data. Two to three outer loops with 50–100 iterations in each loop were needed to obtain a converged 3-D analysis of reflectivity, rainwater, snow, and graupel, including the melting layers with mixed-phase hydrometeors. It is shown that the deficiencies in the analysis using this operator, caused by the poor quality of the background fields and the use of the static background error covariance, can be partially resolved by using radar-retrieved hydrometeors in a preprocessing step and tuning the spatial correlation length scales of the background errors. The direct radar reflectivity assimilation using RadarVar also improved the short-term (2–5 h) precipitation forecasts compared to those of the experiment without DA.


2012 ◽  
Vol 140 (2) ◽  
pp. 587-600 ◽  
Author(s):  
Meng Zhang ◽  
Fuqing Zhang

A hybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.


2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


2011 ◽  
Vol 139 (9) ◽  
pp. 2994-3015 ◽  
Author(s):  
Yann Michel ◽  
Thomas Auligné ◽  
Thibaut Montmerle

Convective-scale models used in NWP nowadays include detailed realistic parameterization for the representation of cloud and precipitation processes. Yet they still lack advanced data assimilation schemes able to efficiently use observations to initialize hydrometeor fields. This challenging task may benefit from a better understanding of the statistical structure of background errors in precipitating areas for both traditional and hydrometeor variables, which is the goal of this study. A special binning has been devised to compute separate background error covariance matrices for precipitating and nonprecipitating areas. This binning is based on bidimensional geographical masks defined by the vertical averaged rain content of the background error perturbations. The sample for computing the covariances is taken from an ensemble of short range forecasts run at 3-km resolution for the prediction of two specific cases of convective storms over the United States. The covariance matrices and associated diagnostics are built on the control variable transform formulation typical of variational data assimilation. The comparison especially highlights the strong coupling of specific humidity, cloud, and rain content with divergence. Shorter horizontal correlations have been obtained in precipitating areas. Vertical correlations mostly reflect the cloud vertical extension due to the convective processes. The statistics for hydrometeor variables show physically meaningful autocovariances and statistical couplings with other variables. Issues for data assimilation of radar reflectivity or more generally of observations linked to cloud and rain content with this kind of background error matrix formulation are thereon briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document