scholarly journals Observations of the Structure and Evolution of Hurricane Edouard (2014) during Intensity Change. Part I: Relationship between the Thermodynamic Structure and Precipitation

2016 ◽  
Vol 144 (9) ◽  
pp. 3333-3354 ◽  
Author(s):  
Jonathan Zawislak ◽  
Haiyan Jiang ◽  
George R. Alvey ◽  
Edward J. Zipser ◽  
Robert F. Rogers ◽  
...  

The structural evolution of the inner core and near environment throughout the life cycle of Hurricane Edouard (2014) is examined using a synthesis of airborne and satellite measurements. This study specifically focuses on the precipitation evolution and thermodynamic changes that occur on the vortex scale during four periods: when Edouard was a slowly intensifying tropical storm, another while a rapidly intensifying hurricane, during the initial stages of weakening after reaching peak intensity, and later while experiencing moderate weakening in the midlatitudes. Results suggest that, in a shear-relative framework, a wavenumber-1 asymmetry exists whereby the downshear quadrants consistently exhibit the greatest precipitation coverage and highest relative humidity, while the upshear quadrants (especially upshear right) exhibit relatively less precipitation coverage and lower humidity, particularly in the midtroposphere. Whether dynamically or precipitation driven, the relatively dry layers upshear appear to be ubiquitously caused by subsidence. The precipitation and thermodynamic asymmetry is observed throughout the intensification and later weakening stages, while a consistently more symmetric distribution is only observed when Edouard reaches peak intensity. The precipitation distribution, which is also discussed in the context of the boundary layer thermodynamic properties, is intimately linked to the thermodynamic symmetry, which becomes greater as the frequency, areal coverage, and, in particular, rainfall rate increases upshear. Although shear is generally believed to be detrimental to intensification, observations in Edouard also indicate that subsidence warming from mesoscale downdrafts in the low- to midtroposphere very near the center may have contributed favorably to organization early in the intensification stage.

2019 ◽  
Vol 147 (8) ◽  
pp. 2765-2785 ◽  
Author(s):  
Kyle Ahern ◽  
Mark A. Bourassa ◽  
Robert E. Hart ◽  
Jun A. Zhang ◽  
Robert F. Rogers

Abstract The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency ≥20 kt (24 h)−1, where 1 kt ≈ 0.5144 m s−1], weakening [WE; intensity tendency <−10 kt (24 h)−1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3091 dropsondes were composited for analysis below 2.5-km elevation—1086 during IN, 1042 during WE, and 963 during SS. In nonintensifying hurricanes, the low-level tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I2) at those radii for nonintensifying hurricanes. Differences in tangential wind structure (and I2) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Nonintensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (θe) and conditional stability are highest inside the RMW of nonintensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer θe is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.


Author(s):  
Kyle Ahern ◽  
Robert E. Hart ◽  
Mark A. Bourassa

AbstractIn this first part of a two-part study, the three-dimensional structure of the inner-core boundary layer (BL) is investigated in a full-physics simulation of Hurricane Irma (2017). BL structure is highlighted during periods of intensity change, with focus on features and mechanisms associated with storm decay. The azimuthal structure of the BL is shown to be linked to the vertical wind shear and storm motion. The BL inflow becomes more asymmetric under increased shear. As BL inflow asymmetry amplifies, asymmetries in the low-level primary circulation and thermodynamic structure develop. A mechanism is identified to explain the onset of pronounced structural asymmetries in coincidence with external forcing (e.g., through shear) that would amplify BL inflow along limited azimuth. The mechanism assumes enhanced advection of absolute angular momentum along the path of the amplified inflow (e.g., amplified downshear), which results in local spin-up of the vortex and development of strong supergradient flow downwind and along the BL top. The associated agradient force results in the outward acceleration of air immediately above the BL inflow, affecting fields including divergence, vertical motion, entropy advection, and inertial stability. In this simulation, descending inflow in coincidence with amplified shear is identified as the conduit through which low-entropy air enters the inner-core BL, thereby hampering convection downwind and resulting in storm decay.


2016 ◽  
Vol 144 (9) ◽  
pp. 3355-3376 ◽  
Author(s):  
Robert F. Rogers ◽  
Jun A. Zhang ◽  
Jonathan Zawislak ◽  
Haiyan Jiang ◽  
George R. Alvey ◽  
...  

The structural evolution of the inner core and near-environment throughout the life cycle of Hurricane Edouard (2014) is examined using a synthesis of airborne and satellite measurements. This study specifically focuses on differences in the distribution of deep convection during two periods: when Edouard intensified toward hurricane status, and when Edouard peaked in intensity and began to weaken. While both periods saw precipitation maximized in the downshear-left and upshear-left quadrants, deep convection was only seen from the aircraft during the intensifying period. Deep convection was located farther inside the radius of maximum winds (RMW) during the intensifying period than the weakening period. This convection is traced to strong updrafts inside the RMW in the downshear-right quadrant, tied to strong low-level convergence and high convective available potential energy (CAPE) as the storm remained over warm water in a moist environment. Strong updrafts persisted upshear left and were collocated with high inertial stability in the inner core. During weakening, no deep convection was present, and the precipitation that was observed was associated with weaker convergence downshear right at larger radii, as CAPE was reduced from lower sea surface temperatures, reduced humidity from subsidence, and a stronger warm core. Weak updrafts were seen upshear left, with little coincidence with the high inertial stability of the inner core. These results highlight the importance of the azimuthal coverage of precipitation and the radial location of deep convection for intensification. A more symmetrical coverage can occur despite the presence of shear-driven azimuthal asymmetries in both the forcing and the local environment of the precipitation.


2020 ◽  
Vol 35 (3) ◽  
pp. 939-958 ◽  
Author(s):  
Russell L. Elsberry ◽  
Natasha Buholzer ◽  
Christopher S. Velden ◽  
Mary S. Jordan

Abstract A CIMSS vertical wind shear (VWS-C) dataset based on reprocessed GOES-East atmospheric motion vectors (AMVs) at 15-min intervals has a −0.36 correlation with the CIMSS Satellite Consensus (SATCON) intensity changes at 30-min intervals over the life cycle of Hurricane Joaquin (2015). Correlations are then calculated for four intensity change events including two rapid intensifications (RIs) and two decays, and four intensity change segments immediately before or after these events. During the first RI, the peak intensity increase of 16 kt (6 h)−1 (1 kt ≈ 0.51 m s−1) follows a small VWS-C decrease to a moderate 8 m s−1 value (negative correlation). A 30-h period of continued RI following the first peak RI occurred under moderate magnitude VWS-C (negative correlation), but with a rotation of the VWS-C direction to become more aligned with the southwestward heading of Joaquin. During the second RI, the peak intensity increase of 15 kt (6 h)−1 leads the rapid VWS-C increase (positive correlation), which the horizontal plots of VWS-C vectors demonstrate is related to an upper-tropospheric cyclone to the northeast of Joaquin. A conceptual model of ocean cooling within the anticyclonic track loop is proposed to explain a counterintuitive decreasing intensity when the VWS-C was also decreasing (positive correlation) during the Joaquin track reversal. These alternating negative and positive correlations during the four events and four segments of intensity change demonstrate the nonlinear relationships between the VWS-C and intensity changes during the life cycle of Joaquin that must be understood, analyzed, and modeled to improve tropical cyclone intensity forecasts, and especially RI events.


2017 ◽  
Vol 145 (4) ◽  
pp. 1413-1426 ◽  
Author(s):  
Jun A. Zhang ◽  
Robert F. Rogers ◽  
Vijay Tallapragada

Abstract This study evaluates the impact of the modification of the vertical eddy diffusivity (Km) in the boundary layer parameterization of the Hurricane Weather Research and Forecasting (HWRF) Model on forecasts of tropical cyclone (TC) rapid intensification (RI). Composites of HWRF forecasts of Hurricanes Earl (2010) and Karl (2010) were compared for two versions of the planetary boundary layer (PBL) scheme in HWRF. The results show that using a smaller value of Km, in better agreement with observations, improves RI forecasts. The composite-mean, inner-core structures for the two sets of runs at the time of RI onset are compared with observational, theoretical, and modeling studies of RI to determine why the runs with reduced Km are more likely to undergo RI. It is found that the forecasts with reduced Km at the RI onset have a shallower boundary layer with stronger inflow, more unstable near-surface air outside the eyewall, stronger and deeper updrafts in regions farther inward from the radius of maximum wind (RMW), and stronger boundary layer convergence closer to the storm center, although the mean storm intensity (as measured by the 10-m winds) is similar for the two groups. Finally, it is found that the departure of the maximum tangential wind from the gradient wind at the eyewall, and the inward advection of angular momentum outside the eyewall, is much larger in the forecasts with reduced Km. This study emphasizes the important role of the boundary layer structure and dynamics in TC intensity change, supporting recent studies emphasizing boundary layer spinup mechanism, and recommends further improvement to the HWRF PBL physics.


MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 259-268
Author(s):  
J.C. MANDAL

A model has been designed to study the surface boundary layer of a tropical storm. The numerical method consists of solving a two point boundary value problem for two systems of simultaneous non-linear differential equations by finite differences. A Stoke's stream function suitable to represent the flow both in interior and exterior regions of a tropical storm boundary layer has been developed. The advantage of the method is that the, boundary layer of the tropical storm can be studied starting from the outer region to the centre of the storm without neglecting non-linear terms. In addition, there IS no need for assumptions on the vertical profiles for tangential and radial velocities. The method is stable and converges within a few iterations. The flow above the friction layer is represented by a steady axisymmetric vortex in gradient balance. To investigate the effect of turbulence- on boundary layer characteristics, turbulence has been represented by four different variations of the eddy coefficient of viscosity with no slip boundary conditions. Computations have been performed 1aking 40-grid points in the vertical direction. It is observed that, if the eddy coefficient of viscosity is assumed to vary with the superimposed flow above the boundary layer, the solutions compare favourably well with observations. The solution also shows an outflow from the Inner core of the boundary layer which is necessary for creation of an eye of the storm.


2017 ◽  
Vol 34 (6) ◽  
pp. 1333-1349 ◽  
Author(s):  
Jun A. Zhang ◽  
Joseph J. Cione ◽  
Evan A. Kalina ◽  
Eric W. Uhlhorn ◽  
Terry Hock ◽  
...  

AbstractThis study highlights infrared sensor technology incorporated into the global positioning system (GPS) dropsonde platforms to obtain sea surface temperature (SST) measurements. This modified sonde (IRsonde) is used to improve understanding of air–sea interaction in tropical cyclones (TCs). As part of the Sandy Supplemental Program, IRsondes were constructed and then deployed during the 2014 hurricane season. Comparisons between SSTs measured by collocated IRsondes and ocean expendables show good agreement, especially in regions with no rain contamination. Surface fluxes were estimated using measurements from the IRsondes and AXBTs via a bulk method that requires measurements of SST and near-surface (10 m) wind speed, temperature, and humidity. The evolution of surface fluxes and their role in the intensification and weakening of Hurricane Edouard (2014) are discussed in the context of boundary layer recovery. The study’s result emphasizes the important role of surface flux–induced boundary layer recovery in regulating the low-level thermodynamic structure that is tied to the asymmetry of convection and TC intensity change.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Jun A. Zhang ◽  
Kathryn M. Newman

The intensity and structure of simulated tropical cyclones (TCs) are known to be sensitive to the planetary boundary layer (PBL) parameterization in numerical weather prediction models. In this paper, we use an idealized version of the Hurricane Weather Research and Forecast system (HWRF) with constant sea-surface temperature (SST) to examine how the configuration of the PBL scheme used in the operational HWRF affects TC intensity change (including rapid intensification) and structure. The configuration changes explored in this study include disabling non-local vertical mixing, changing the coefficients in the stability functions for momentum and heat, and directly modifying the Prandtl number (Pr), which controls the ratio of momentum to heat and moisture exchange in the PBL. Relative to the control simulation, disabling non-local mixing produced a ~15% larger storm that intensified more gradually, while changing the coefficient values used in the stability functions had little effect. Varying Pr within the PBL had the greatest impact, with the largest Pr (~1.6 versus ~0.8) associated with more rapid intensification (~38 versus 29 m s−1 per day) but a 5–10 m s−1 weaker intensity after the initial period of strengthening. This seemingly paradoxical result is likely due to a decrease in the radius of maximum wind (~15 versus 20 km), but smaller enthalpy fluxes, in simulated storms with larger Pr. These results underscore the importance of measuring the vertical eddy diffusivities of momentum, heat, and moisture under high-wind, open-ocean conditions to reduce uncertainty in Pr in the TC PBL.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 650
Author(s):  
Robert F. Rogers

Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation to major hurricane status. Topics covered include (1) characterizing TC structure and its relationship to intensity change; (2) TC intensification in vertical shear; (3) planetary boundary layer (PBL) processes and air–sea interaction; (4) upper-level warm core structure and evolution; (5) genesis and development of weak TCs; and (6) secondary eyewall formation/eyewall replacement cycles (SEF/ERC). Gaps in our airborne observational capabilities are discussed, as are new observing technologies to address these gaps and future directions for airborne TC intensity change research.


Sign in / Sign up

Export Citation Format

Share Document