scholarly journals Observations of the Structure and Evolution of Hurricane Edouard (2014) during Intensity Change. Part II: Kinematic Structure and the Distribution of Deep Convection

2016 ◽  
Vol 144 (9) ◽  
pp. 3355-3376 ◽  
Author(s):  
Robert F. Rogers ◽  
Jun A. Zhang ◽  
Jonathan Zawislak ◽  
Haiyan Jiang ◽  
George R. Alvey ◽  
...  

The structural evolution of the inner core and near-environment throughout the life cycle of Hurricane Edouard (2014) is examined using a synthesis of airborne and satellite measurements. This study specifically focuses on differences in the distribution of deep convection during two periods: when Edouard intensified toward hurricane status, and when Edouard peaked in intensity and began to weaken. While both periods saw precipitation maximized in the downshear-left and upshear-left quadrants, deep convection was only seen from the aircraft during the intensifying period. Deep convection was located farther inside the radius of maximum winds (RMW) during the intensifying period than the weakening period. This convection is traced to strong updrafts inside the RMW in the downshear-right quadrant, tied to strong low-level convergence and high convective available potential energy (CAPE) as the storm remained over warm water in a moist environment. Strong updrafts persisted upshear left and were collocated with high inertial stability in the inner core. During weakening, no deep convection was present, and the precipitation that was observed was associated with weaker convergence downshear right at larger radii, as CAPE was reduced from lower sea surface temperatures, reduced humidity from subsidence, and a stronger warm core. Weak updrafts were seen upshear left, with little coincidence with the high inertial stability of the inner core. These results highlight the importance of the azimuthal coverage of precipitation and the radial location of deep convection for intensification. A more symmetrical coverage can occur despite the presence of shear-driven azimuthal asymmetries in both the forcing and the local environment of the precipitation.

2016 ◽  
Vol 73 (8) ◽  
pp. 3305-3328 ◽  
Author(s):  
Daniel P. Stern ◽  
Fuqing Zhang

Abstract The warm-core structure of Hurricane Earl (2010) is examined on four different days, spanning periods of both rapid intensification (RI) and weakening, using high-altitude dropsondes from both the inner core and the environment, as well as a convection-permitting numerical forecast. During RI, strong warming occurred at all heights, while during rapid weakening, little temperature change was observed, implying the likelihood of substantial (unobserved) cooling above flight level (12 km). Using a local environmental reference state yields a perturbation temperature profile with two distinct maxima of approximately equal magnitude: one at 4–6-km and the other at 9–12-km height. However, using a climatological-mean sounding instead results in the upper-level maximum being substantially stronger than the midlevel maximum. This difference results from the fact that the local environment of Earl was warmer than the climatological mean and that this relative warmth increased with height. There is no obvious systematic relationship between the height of the warm core and either intensity or intensity change for either reference state. The structure of the warm core simulated by the convection-permitting forecast compares well with the observations for the periods encompassing RI. Later, an eyewall replacement cycle went unforecast, and increased errors in the warm-core structure are likely related to errors in the forecast wind structure. At most times, the simulated radius of maximum winds (RMW) had too great of an outward slope (the upper-level RMW was too large), and this is likely also associated with structural biases in the warm core.


2016 ◽  
Vol 144 (9) ◽  
pp. 3333-3354 ◽  
Author(s):  
Jonathan Zawislak ◽  
Haiyan Jiang ◽  
George R. Alvey ◽  
Edward J. Zipser ◽  
Robert F. Rogers ◽  
...  

The structural evolution of the inner core and near environment throughout the life cycle of Hurricane Edouard (2014) is examined using a synthesis of airborne and satellite measurements. This study specifically focuses on the precipitation evolution and thermodynamic changes that occur on the vortex scale during four periods: when Edouard was a slowly intensifying tropical storm, another while a rapidly intensifying hurricane, during the initial stages of weakening after reaching peak intensity, and later while experiencing moderate weakening in the midlatitudes. Results suggest that, in a shear-relative framework, a wavenumber-1 asymmetry exists whereby the downshear quadrants consistently exhibit the greatest precipitation coverage and highest relative humidity, while the upshear quadrants (especially upshear right) exhibit relatively less precipitation coverage and lower humidity, particularly in the midtroposphere. Whether dynamically or precipitation driven, the relatively dry layers upshear appear to be ubiquitously caused by subsidence. The precipitation and thermodynamic asymmetry is observed throughout the intensification and later weakening stages, while a consistently more symmetric distribution is only observed when Edouard reaches peak intensity. The precipitation distribution, which is also discussed in the context of the boundary layer thermodynamic properties, is intimately linked to the thermodynamic symmetry, which becomes greater as the frequency, areal coverage, and, in particular, rainfall rate increases upshear. Although shear is generally believed to be detrimental to intensification, observations in Edouard also indicate that subsidence warming from mesoscale downdrafts in the low- to midtroposphere very near the center may have contributed favorably to organization early in the intensification stage.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 650
Author(s):  
Robert F. Rogers

Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation to major hurricane status. Topics covered include (1) characterizing TC structure and its relationship to intensity change; (2) TC intensification in vertical shear; (3) planetary boundary layer (PBL) processes and air–sea interaction; (4) upper-level warm core structure and evolution; (5) genesis and development of weak TCs; and (6) secondary eyewall formation/eyewall replacement cycles (SEF/ERC). Gaps in our airborne observational capabilities are discussed, as are new observing technologies to address these gaps and future directions for airborne TC intensity change research.


2016 ◽  
Vol 73 (11) ◽  
pp. 4289-4309 ◽  
Author(s):  
Tomoki Ohno ◽  
Masaki Satoh ◽  
Yohei Yamada

Abstract Based on the data of a 1-yr simulation by a global nonhydrostatic model with 7-km horizontal grid spacing, the relationships among warm-core structures, eyewall slopes, and the intensities of tropical cyclones (TCs) were investigated. The results showed that stronger TCs generally have warm-core maxima at higher levels as their intensities increase. It was also found that the height of a warm-core maximum ascends (descends) as the TC intensifies (decays). To clarify how the height and amplitude of warm-core maxima are related to TC intensity, the vortex structures of TCs were investigated. By gradually introducing simplifications of the thermal wind balance, it was established that warm-core structures can be reconstructed using only the tangential wind field within the inner-core region and the ambient temperature profile. A relationship between TC intensity and eyewall slope was investigated by introducing a parameter that characterizes the shape of eyewalls and can be evaluated from satellite measurements. The authors found that the eyewall slope becomes steeper (shallower) as the TC intensity increases (decreases). Based on a balanced model, the authors proposed a relationship between TC intensity and eyewall slope. The result of the proposed model is consistent with that of the analysis using the simulation data. Furthermore, for sufficiently strong TCs, the authors found that the height of the warm-core maximum increases as the slope becomes steeper, which is consistent with previous observational studies. These results suggest that eyewall slopes can be used to diagnose the intensities and structures of TCs.


2016 ◽  
Vol 144 (11) ◽  
pp. 4461-4482 ◽  
Author(s):  
Daniel S. Harnos ◽  
Stephen W. Nesbitt

Abstract Characteristics of over 15 000 tropical cyclone (TC) inner cores are evaluated coincidentally using 37- and 85-GHz passive microwave data to quantify the relative prevalence of cold clouds (i.e., deep convection and stratiform clouds) versus predominantly warm clouds (i.e., shallow cumuli and cumulus congestus). Results indicate greater presence of combined liquid and frozen hydrometeors associated with cold clouds within the atmospheric column for TCs undergoing subsequent rapid intensification (RI) or intensification. RI episodes compared to the full intensity change distribution exhibit approximately an order of magnitude increase for inner-core cold cloud frequency relative to warm cloud presence. Incorporation of an objective ring detection algorithm shows the robust presence of rings associated with hydrometeors for 85-GHz polarization corrected temperatures () and 37-GHz vertically polarized brightness temperatures () for differentiating RI with significance levels ≥99.99%, while 37-GHz false color rings of a combined cyan and pink appearance surrounding a region that is not cyan or pink lack statistical significance for discriminating RI against lesser intensification. Rings of depressed and enhanced tied to RI suggest the combined presence of liquid and frozen hydrometeors within the atmospheric column, indicative of cold clouds. The rings also exhibit preferences for those with collocated more widespread ice scattering signatures to be more commonly associated with RI and general intensification.


2007 ◽  
Vol 22 (4) ◽  
pp. 708-725 ◽  
Author(s):  
Thomas A. Jones ◽  
Daniel J. Cecil ◽  
Jason Dunion

Abstract The evolution of Hurricane Erin (2001) is presented from the perspective of its environmental and inner-core conditions, particularly as they are characterized in the Statistical Hurricane Intensity Prediction Scheme with Microwave Imagery (SHIPS-MI). Erin can be described as having two very distinct periods. The first, which occurred between 1 and 6 September 2001, was characterized by a struggling tropical storm failing to intensify as the result of unfavorable environmental and inner-core conditions. The surrounding environment during this period was dominated by moderate shear and mid- to upper-level dry air, both caused in some part by the presence of a Saharan air layer (SAL). Further intensification was inhibited by the lack of sustained deep convection and latent heating near the low-level center. The authors attribute this in part to negative effects from the SAL. The thermodynamic conditions associated with the SAL were not well sampled by the SHIPS parameters, resulting in substantial overforecasting by both SHIPS and SHIPS-MI. Instead, the hostile conditions surrounding Erin caused its dissipation on 6 September. The second period began on 7 September when Erin re-formed north of the original center. Erin began to pull away from the SAL and moved over 29°C sea surface temperatures, beginning a rapid intensification phase and reaching 105 kt by 1800 UTC 9 September. SHIPS-MI forecasts called for substantial intensification as in the previous period, but this time the model underestimated the rate of intensification. The addition of inner-core characteristics from passive microwave data improved the skill somewhat compared to SHIPS, but still left much room for improvement. For this period, it appears that the increasingly favorable atmospheric conditions caused by Erin moving away from the SAL were not well sampled by SHIPS or SHIPS-MI. As a result, the intensity change forecasts were not able to take into account the more favorable environment.


2015 ◽  
Vol 28 (22) ◽  
pp. 8791-8824 ◽  
Author(s):  
Cheng Tao ◽  
Haiyan Jiang

Abstract Shear-relative distributions of four types of precipitation/convection in tropical cyclones (TCs) are statistically analyzed using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. The dataset of 1139 TRMM PR overpasses of tropical storms through category-2 hurricanes over global TC-prone basins is divided by future 24-h intensity change. It is found that increased and widespread shallow precipitation (defined as where the 20-dBZ radar echo height <6 km) around the storm center is a first sign of rapid intensification (RI) and could be used as a predictor of the onset of RI. The contribution to total volumetric rain and latent heating from shallow and moderate precipitation (20-dBZ echo height between 6 and 10 km) in the inner core is greater in RI storms than in non-RI storms, while the opposite is true for moderately deep (20-dBZ echo height between 10 and 14 km) and very deep precipitation (20-dBZ echo height ≥14 km). The authors argue that RI is more likely triggered by the increase of shallow–moderate precipitation and the appearance of more moderately to very deep convection in the middle of RI is more likely a response or positive feedback to changes in the vortex. For RI storms, a cyclonic rotation of frequency peaks from shallow (downshear right) to moderate (downshear left) to moderately and very deep precipitation (upshear left) is found and may be an indicator of a rapidly strengthening vortex. A ring of almost 90% occurrence of total precipitation is found for storms in the middle of RI, consistent with the previous finding of the cyan and pink ring on the 37-GHz color product.


2017 ◽  
Vol 98 (10) ◽  
pp. 2113-2134 ◽  
Author(s):  
James D. Doyle ◽  
Jonathan R. Moskaitis ◽  
Joel W. Feldmeier ◽  
Ronald J. Ferek ◽  
Mark Beaubien ◽  
...  

Abstract Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.


2016 ◽  
Vol 46 (4) ◽  
pp. 1097-1115 ◽  
Author(s):  
Zhan Su ◽  
Andrew P. Ingersoll ◽  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractThe energetics of thermobaricity- and cabbeling-powered deep convection occurring in oceans with cold freshwater overlying warm salty water are investigated here. These quasi-two-layer profiles are widely observed in wintertime polar oceans. The key diagnostic is the ocean convective available potential energy (OCAPE), a concept introduced in a companion piece to this paper (Part I). For an isolated ocean column, OCAPE arises from thermobaricity and is the maximum potential energy (PE) that can be converted into kinetic energy (KE) under adiabatic vertical parcel rearrangements. This study explores the KE budget of convection using two-dimensional numerical simulations and analytical estimates. The authors find that OCAPE is a principal source for KE. However, the complete conversion of OCAPE to KE is inhibited by diabatic processes. Further, this study finds that diabatic processes produce three other distinct contributions to the KE budget: (i) a sink of KE due to the reduction of stratification by vertical mixing, which raises water column’s center of mass and thus acts to convert KE to PE; (ii) a source of KE due to cabbeling-induced shrinking of the water column’s volume when water masses with different temperatures are mixed, which lowers the water column’s center of mass and thus acts to convert PE into KE; and (iii) a reduced production of KE due to diabatic energy conversion of the KE convertible part of the PE to the KE inconvertible part of the PE. Under some simplifying assumptions, the authors also propose a theory to estimate the maximum depth of convection from an energetic perspective. This study provides a potential basis for improving the convection parameterization in ocean models.


2014 ◽  
Vol 71 (11) ◽  
pp. 3902-3930 ◽  
Author(s):  
Sungsu Park

Abstract The author develops a unified convection scheme (UNICON) that parameterizes relative (i.e., with respect to the grid-mean vertical flow) subgrid vertical transport by nonlocal asymmetric turbulent eddies. UNICON is a process-based model of subgrid convective plumes and mesoscale organized flow without relying on any quasi-equilibrium assumptions such as convective available potential energy (CAPE) or convective inhibition (CIN) closures. In combination with a relative subgrid vertical transport scheme by local symmetric turbulent eddies and a grid-scale advection scheme, UNICON simulates vertical transport of water species and conservative scalars without double counting at any horizontal resolution. UNICON simulates all dry–moist, forced–free, and shallow–deep convection within a single framework in a seamless, consistent, and unified way. It diagnoses the vertical profiles of the macrophysics (fractional area, plume radius, and number density) as well as the microphysics (production and evaporation rates of convective precipitation) and the dynamics (mass flux and vertical velocity) of multiple convective updraft and downdraft plumes. UNICON also prognoses subgrid cold pool and mesoscale organized flow within the planetary boundary layer (PBL) that is forced by evaporation of convective precipitation and accompanying convective downdrafts but damped by surface flux and entrainment at the PBL top. The combined subgrid parameterization of diagnostic convective updraft and downdraft plumes, prognostic subgrid mesoscale organized flow, and the feedback among them remedies the weakness of conventional quasi-steady diagnostic plume models—the lack of plume memory across the time step—allowing UNICON to successfully simulate various transitional phenomena associated with convection (e.g., the diurnal cycle of precipitation and the Madden–Julian oscillation).


Sign in / Sign up

Export Citation Format

Share Document