scholarly journals Analyzing Simulated Convective Bursts in Two Atlantic Hurricanes. Part I: Burst Formation and Development

2017 ◽  
Vol 145 (8) ◽  
pp. 3073-3094 ◽  
Author(s):  
Andrew T. Hazelton ◽  
Robert F. Rogers ◽  
Robert E. Hart

Understanding the structure and evolution of the tropical cyclone (TC) inner core remains an elusive challenge in tropical meteorology, especially the role of transient asymmetric features such as localized strong updrafts known as convective bursts (CBs). This study investigates the formation of CBs and their role in TC structure and evolution using high-resolution simulations of two Atlantic hurricanes (Dean in 2007 and Bill in 2009) with the Weather Research and Forecasting (WRF) Model. Several different aspects of the dynamics and thermodynamics of the TC inner-core region are investigated with respect to their influence on TC convective burst development. Composites with CBs show stronger radial inflow in the lowest 2 km, and stronger radial outflow from the eye to the eyewall around z = 2–4 km, than composites without CBs. Asymmetric vorticity associated with eyewall mesovortices appears to be a major factor in some of the radial flow anomalies that lead to CB development. The anomalous outflow from these mesovortices, along with outflow from supergradient parcels above the boundary layer, favors low-level convergence and also appears to mix high- θ e air from the eye into the eyewall. Analyses of individual CBs and parcel trajectories show that parcels are pulled into the eye and briefly mix with the eye air. The parcels then rapidly move outward into the eyewall, and quickly ascend in CBs, in some cases with vertical velocities of over 20 m s−1. These results support the importance of horizontal asymmetries in forcing extreme asymmetric vertical velocity in tropical cyclones.

2020 ◽  
Vol 77 (1) ◽  
pp. 355-377 ◽  
Author(s):  
Zhanhong Ma

Abstract Typhoon Francisco (2013) experienced unusually rapid weakening (RW) with its maximum surface wind decreasing by 45 kt (1 kt ≈ 0.51 m s−1) over 24 h as measured from the satellite-derived advanced Dvorak technique (ADT) dataset, which is more than twice the weakening rate defined as RW by DeMaria. The mechanisms leading to the extreme RW event of Francisco are examined based on observational analysis and simulations by coupling the Weather Research and Forecasting (WRF) Model, version 3.7, with the Stony Brook Parallel Ocean Model (sbPOM). The RW of Francisco took place in a relatively favorable atmospheric environment while passing over detrimental oceanic conditions, dominated by the presence of a cold-core eddy. The passages of two prior typhoons apparently intensified the cold-core eddy, contributing to a major role of eddy feedback on RW for Francisco. The structural changes in Francisco accompanying eddy interaction are characterized by a substantially enlarged eye size, which evolved from ~20 to ~100 km in diameter, as indicated from satellite images. Numerical simulations suggest that the eddy is prominent in weakening the intensity of Francisco during the storm–eddy interaction, with its role less significant but still comparable to that of the cold wake. Both the cooler water and stronger upward motion in the eddy lead to a larger sea surface temperature decrease induced by Francisco, which results in a nearly 50% decrease of surface enthalpy flux, suppressed convective bursts, and a 50% reduction in latent heat release. These results underscore the potential importance of open-ocean, cold-core eddies in contributing to the RW of tropical cyclones.


2018 ◽  
Vol 75 (11) ◽  
pp. 3887-3910 ◽  
Author(s):  
Kuan-Chieh Huang ◽  
Chun-Chieh Wu

Abstract Tropical cyclones (TCs) encountering the terrain of Taiwan usually experience prominent track deflection, resulting in uncertainty in TC track forecasts. The underlying mechanisms of TC deflection are examined to better understand the pattern of TC tracks under various flow regimes. In this study, idealized experiments are carried out utilizing the Advanced Research version of the Weather Research and Forecasting (WRF) Model. This study investigates the motion of a TC that is deflected southward while moving westward toward an idealized terrain similar to Taiwan. An analysis of both the flow asymmetries and the potential vorticity tendency (PVT) demonstrates that horizontal advection contributes to the southward movement of the TC. The track deflection is examined in two separate time periods, with different mechanisms leading to the southward movement. Changes in the background flow induced by the terrain first cause the large-scale steering current to push the TC southward while the TC is still far from the terrain. As the TC approaches the idealized topography, the role of the inner-core dynamics becomes important, and the TC terrain-induced channeling effect results in further southward deflection. Asymmetries in the midlevel flow also develop during this period, in part associated with the effect of vertical momentum transport. The combination of the large-scale environmental flow, the low-level channeling effect, and asymmetries in the midlevel flow all contribute to the southward deflection of the TC track.


2017 ◽  
Vol 145 (8) ◽  
pp. 3095-3117 ◽  
Author(s):  
Andrew T. Hazelton ◽  
Robert E. Hart ◽  
Robert F. Rogers

This paper investigates convective burst (CB) evolution in Weather Research and Forecasting (WRF) Model simulations of two tropical cyclones (TCs), focusing on the relationship between CBs and TC intensity change. Analysis of intensity change in the simulations shows that there are more CBs inside the radius of maximum winds (RMW) during times when the TCs are about to intensify, while weakening/steady times are associated with more CBs outside the RMW, consistent with past observational and theoretical studies. The vertical mass flux distributions show greater vertical mass flux at upper levels both from weaker updrafts and CBs for intensifying cases. The TC simulations are further dissected by past intensity change, and times of sustained intensification have more CBs than times when the TC has been weakening but then intensifies. This result suggests that CB development may not always be predictive of intensification, but rather may occur as a result of ongoing intensification and contribute to ongoing intensification. Abrupt short-term intensification is found to be associated with an even higher density of CBs inside the RMW than is slower intensification. Lag correlations between CBs and intensity reveal a broad peak, with the CBs leading pressure falls by 0–3 h. These relationships are further confirmed by analysis of individual simulation periods, although the relationship can vary depending on environmental conditions and the previous evolution of the TC. These results show that increased convection due to both weak updrafts and CBs inside the RMW is favorable for sustained TC intensification and show many details of the typical short-term response of the TC core to CBs.


2015 ◽  
Vol 15 (11) ◽  
pp. 16111-16139 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity in the environment, which deforms the quasi-Lagrangian boundary of the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. However, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2019 ◽  
Vol 19 (22) ◽  
pp. 14289-14310 ◽  
Author(s):  
Ping Zhu ◽  
Bryce Tyner ◽  
Jun A. Zhang ◽  
Eric Aligo ◽  
Sundararaman Gopalakrishnan ◽  
...  

Abstract. While turbulence is commonly regarded as a flow feature pertaining to the planetary boundary layer (PBL), intense turbulent mixing generated by cloud processes also exists above the PBL in the eyewall and rainbands of a tropical cyclone (TC). The in-cloud turbulence above the PBL is intimately involved in the development of convective elements in the eyewall and rainbands and consists of a part of asymmetric eddy forcing for the evolution of the primary and secondary circulations of a TC. In this study, we show that the Hurricane Weather Research and Forecasting (HWRF) model, one of the operational models used for TC prediction, is unable to generate appropriate sub-grid-scale (SGS) eddy forcing above the PBL due to a lack of consideration of intense turbulent mixing generated by the eyewall and rainband clouds. Incorporating an in-cloud turbulent-mixing parameterization in the vertical turbulent-mixing scheme notably improves the HWRF model's skills in predicting rapid changes in intensity for several past major hurricanes. While the analyses show that the SGS eddy forcing above the PBL is only about one-fifth of the model-resolved eddy forcing, the simulated TC vortex inner-core structure, secondary overturning circulation, and the model-resolved eddy forcing exhibit a substantial dependence on the parameterized SGS eddy processes. The results highlight the importance of eyewall and rainband SGS eddy forcing to numerical prediction of TC intensification, including rapid intensification at the current resolution of operational models.


2015 ◽  
Vol 15 (24) ◽  
pp. 14041-14053 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts relative to the storm path. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity that deforms the quasi-Lagrangian boundary of the storm and changes the moisture transport into the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. In contrast, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2020 ◽  
Author(s):  
Xiaohao Qin ◽  
Wansuo Duan ◽  
Hui Xu

<p>The present study uses the nonlinear singular vector (NFSV) approach to identify the optimally-growing tendency perturbations of the Weather Research and Forecasting (WRF) model for tropical cyclone (TC) intensity forecasts. For nine selected TC cases, the NFSV-tendency perturbations of the WRF model, including components of potential temperature and/or moisture, are calculated when TC intensities are forecasted with a 24-hour lead time, and their respective potential temperature components are demonstrated to have more impact on the TC intensity forecasts. The perturbations coherently show barotropic structure around the central location of the TCs at the 24-hour lead time, and their dominant energies concentrate in the middle layers of the atmosphere. Moreover, such structures do not depend on TC intensities and subsequent development of the TC. The NFSV-tendency perturbations may indicate that the model uncertainty that is represented by tendency perturbations but associated with the inner-core of TCs, makes larger contributions to the TC intensity forecast uncertainty. Further analysis shows that the TC intensity forecast skill could be greatly improved as preferentially superimposing an appropriate tendency perturbation associated with the sensitivity of NFSVs to correct the model, even if using a WRF with coarse resolution.</p><div> <div> </div> </div>


2014 ◽  
Vol 14 (7) ◽  
pp. 3175-3182 ◽  
Author(s):  
S. H. Kim ◽  
H.-Y. Chun ◽  
W. Jang

Abstract. The characteristics of horizontal divergence induced by typhoon-generated gravity waves (HDTGWs) and the influence of HDTGW on typhoon evolution are investigated based on the simulation results of Typhoon Saomai (2006) using the Weather Research and Forecasting (WRF) model. The power spectral density of HDTGW shows dominant powers at horizontal wavelengths of 20–30 km and at periods of less than 1 h. This is associated with gravity waves generated by vigorous convective clouds in an inner core region of the typhoon. However, the domain-averaged HDTGW in the upper troposphere and lower stratosphere had a spectral peak at 24 h, which is well correlated with the minimum sea-level pressure of the typhoon, especially during a rapidly developing period. The 24 h period of the averaged HDTGW stems from the inertia–gravity waves generated by the convective clouds in the spiral rainbands, and showed no clear association with the thermal tides or the diurnal variation of precipitation.


2008 ◽  
Vol 65 (3) ◽  
pp. 714-736 ◽  
Author(s):  
Christopher A. Davis ◽  
Sarah C. Jones ◽  
Michael Riemer

Abstract Simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET). The simulations were performed in real time using the Advanced Research Weather Research and Forecasting (WRF) model (ARW), using a moving, storm-centered nest of either 4- or 1.33-km grid spacing. The six simulations, ranging from 45 to 96 h in length, provide realistic evolution of asymmetric precipitation structures, implying control by the synoptic scale, primarily through the vertical wind shear. The authors find that, as expected, the magnitude of the vortex tilt increases with increasing shear, but it is not until the shear approaches 20 m s−1 that the total vortex circulation decreases. Furthermore, the total vertical mass flux is proportional to the shear for shears less than about 20–25 m s−1, and therefore maximizes, not in the tropical phase, but rather during ET. This has important implications for predicting hurricane-induced perturbations of the midlatitude jet and its consequences on downstream predictability. Hurricane vortices in the sample resist shear by either adjusting their vertical structure through precession (Helene 2006), forming an entirely new center (Irene 2005), or rapidly developing into a baroclinic cyclone in the presence of a favorable upper-tropospheric disturbance (Maria 2005). Vortex resiliency is found to have a substantial diabatic contribution whereby vertical tilt is reduced through reduction of the primary vortex asymmetry induced by the shear. If the shear and tilt are so large that upshear subsidence overwhelms the symmetric vertical circulation of the hurricane, latent heating and precipitation will occur to the left of the tilt vector and slow precession. Such was apparent during Wilma (2005).


2019 ◽  
Vol 210 ◽  
pp. 05006
Author(s):  
K Shinozaki ◽  
S Monte ◽  
S Ferrarese ◽  
M Manfrin ◽  
ME Bertaina ◽  
...  

EUSO-SPB1 was a balloon-borne mission of the JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) Program aiming at the ultra-high energy cosmic ray (UHECR) observations from space. We operated the EUSO-SPB1 telescope consisting of 1 m2 Fresnel refractive optics and multi-anode photomultiplier tubes. With a total of 2304 channels, each performed the photon counting every 2.5 µs, allowing for spatiotemporal imaging of the air shower events in an ~ 11°× 11° field of view. EUSO-SPB1 was the first balloon-borne fluorescence detector with a potential to detect air shower events initiated by the EeV energy cosmic rays. On 24 April 2017 UTC, EUSO-SPB1 was launched on the NASA’s Super Pressure Balloon that flew at ~16 – 33 km flight height for ~12 days. Before the flight was terminated, ~27 hours of data acquired in the air shower detection mode were transmitted to the ground. In the present work, we aim at evaluating the role of the clouds during the operation of EUSO-SPB1. We employ the WRF (Weather Research and Forecasting) model to numerically simulate the cloud distribution below EUSO-SPB1. We discuss the key results of the WRF model and the impact of the clouds on the air shower measurement and the efficiency of the cosmic ray observation. The present work is a part of the collaborative effort to estimate the exposure for air shower detections.


Sign in / Sign up

Export Citation Format

Share Document