scholarly journals Analyzing Simulated Convective Bursts in Two Atlantic Hurricanes. Part II: Intensity Change due to Bursts

2017 ◽  
Vol 145 (8) ◽  
pp. 3095-3117 ◽  
Author(s):  
Andrew T. Hazelton ◽  
Robert E. Hart ◽  
Robert F. Rogers

This paper investigates convective burst (CB) evolution in Weather Research and Forecasting (WRF) Model simulations of two tropical cyclones (TCs), focusing on the relationship between CBs and TC intensity change. Analysis of intensity change in the simulations shows that there are more CBs inside the radius of maximum winds (RMW) during times when the TCs are about to intensify, while weakening/steady times are associated with more CBs outside the RMW, consistent with past observational and theoretical studies. The vertical mass flux distributions show greater vertical mass flux at upper levels both from weaker updrafts and CBs for intensifying cases. The TC simulations are further dissected by past intensity change, and times of sustained intensification have more CBs than times when the TC has been weakening but then intensifies. This result suggests that CB development may not always be predictive of intensification, but rather may occur as a result of ongoing intensification and contribute to ongoing intensification. Abrupt short-term intensification is found to be associated with an even higher density of CBs inside the RMW than is slower intensification. Lag correlations between CBs and intensity reveal a broad peak, with the CBs leading pressure falls by 0–3 h. These relationships are further confirmed by analysis of individual simulation periods, although the relationship can vary depending on environmental conditions and the previous evolution of the TC. These results show that increased convection due to both weak updrafts and CBs inside the RMW is favorable for sustained TC intensification and show many details of the typical short-term response of the TC core to CBs.

2017 ◽  
Vol 145 (8) ◽  
pp. 3073-3094 ◽  
Author(s):  
Andrew T. Hazelton ◽  
Robert F. Rogers ◽  
Robert E. Hart

Understanding the structure and evolution of the tropical cyclone (TC) inner core remains an elusive challenge in tropical meteorology, especially the role of transient asymmetric features such as localized strong updrafts known as convective bursts (CBs). This study investigates the formation of CBs and their role in TC structure and evolution using high-resolution simulations of two Atlantic hurricanes (Dean in 2007 and Bill in 2009) with the Weather Research and Forecasting (WRF) Model. Several different aspects of the dynamics and thermodynamics of the TC inner-core region are investigated with respect to their influence on TC convective burst development. Composites with CBs show stronger radial inflow in the lowest 2 km, and stronger radial outflow from the eye to the eyewall around z = 2–4 km, than composites without CBs. Asymmetric vorticity associated with eyewall mesovortices appears to be a major factor in some of the radial flow anomalies that lead to CB development. The anomalous outflow from these mesovortices, along with outflow from supergradient parcels above the boundary layer, favors low-level convergence and also appears to mix high- θ e air from the eye into the eyewall. Analyses of individual CBs and parcel trajectories show that parcels are pulled into the eye and briefly mix with the eye air. The parcels then rapidly move outward into the eyewall, and quickly ascend in CBs, in some cases with vertical velocities of over 20 m s−1. These results support the importance of horizontal asymmetries in forcing extreme asymmetric vertical velocity in tropical cyclones.


2018 ◽  
Vol 146 (12) ◽  
pp. 4279-4302 ◽  
Author(s):  
Alex M. Kowaleski ◽  
Jenni L. Evans

Abstract An ensemble of 72 Weather Research and Forecasting (WRF) Model simulations is evaluated to examine the relationship between the track of Hurricane Sandy (2012) and its structural evolution. Initial and boundary conditions are obtained from ECMWF and GEFS ensemble forecasts initialized at 0000 UTC 25 October. The 5-day WRF simulations are initialized at 0000 UTC 27 October, 48 h into the global model forecasts. Tracks and cyclone phase space (CPS) paths from the 72 simulations are partitioned into 6 clusters using regression mixture models; results from the 4 most populous track clusters are examined. The four analyzed clusters vary in mean landfall location from southern New Jersey to Maine. Extratropical transition timing is the clearest difference among clusters; more eastward clusters show later Sandy–midlatitude trough interaction, warm seclusion formation, and extratropical transition completion. However, the intercluster variability is much smaller when examined relative to the landfall time of each simulation. In each cluster, a short-lived warm seclusion forms and contracts through landfall while lower-tropospheric potential vorticity concentrates at small radii. Despite the large-scale similarity among the clusters, relevant intercluster differences in landfall-relative extratropical transition are observed. In the easternmost cluster the Sandy–trough interaction is least intense and the warm seclusion decays the most by landfall. In the second most eastward cluster Sandy retains the most intact warm seclusion at landfall because of a slightly later (relative to landfall) and weaker trough interaction compared to the two most westward clusters. Nevertheless, the remarkably similar large-scale evolution of Sandy among the four clusters indicates the high predictability of Sandy’s warm seclusion extratropical transition before landfall.


2020 ◽  
Vol 77 (1) ◽  
pp. 355-377 ◽  
Author(s):  
Zhanhong Ma

Abstract Typhoon Francisco (2013) experienced unusually rapid weakening (RW) with its maximum surface wind decreasing by 45 kt (1 kt ≈ 0.51 m s−1) over 24 h as measured from the satellite-derived advanced Dvorak technique (ADT) dataset, which is more than twice the weakening rate defined as RW by DeMaria. The mechanisms leading to the extreme RW event of Francisco are examined based on observational analysis and simulations by coupling the Weather Research and Forecasting (WRF) Model, version 3.7, with the Stony Brook Parallel Ocean Model (sbPOM). The RW of Francisco took place in a relatively favorable atmospheric environment while passing over detrimental oceanic conditions, dominated by the presence of a cold-core eddy. The passages of two prior typhoons apparently intensified the cold-core eddy, contributing to a major role of eddy feedback on RW for Francisco. The structural changes in Francisco accompanying eddy interaction are characterized by a substantially enlarged eye size, which evolved from ~20 to ~100 km in diameter, as indicated from satellite images. Numerical simulations suggest that the eddy is prominent in weakening the intensity of Francisco during the storm–eddy interaction, with its role less significant but still comparable to that of the cold wake. Both the cooler water and stronger upward motion in the eddy lead to a larger sea surface temperature decrease induced by Francisco, which results in a nearly 50% decrease of surface enthalpy flux, suppressed convective bursts, and a 50% reduction in latent heat release. These results underscore the potential importance of open-ocean, cold-core eddies in contributing to the RW of tropical cyclones.


2020 ◽  
Vol 35 (1) ◽  
pp. 285-298 ◽  
Author(s):  
Liang Hu ◽  
Elizabeth A. Ritchie ◽  
J. Scott Tyo

Abstract The deviation angle variance (DAV) is a parameter that characterizes the level of organization of a cloud cluster compared with a perfectly axisymmetric tropical cyclone (TC) using satellite infrared (IR) imagery, and can be used to estimate the intensity of the TC. In this study, the DAV technique is further used to analyze the relationship between satellite imagery and TC future intensity over the North Atlantic basin. The results show that the DAV of the TC changes ahead of the TC intensity change, and this can be used to predict short-term TC intensity. The DAV-IR 24-h forecast is close to the National Hurricane Center (NHC) 24-h forecast, and the bias is lower than NHC and other methods during weakening periods. Furthermore, an improved TC intensity forecast is obtained by incorporating all four satellite bands. Using SST and TC latitude as the other two predictors in a linear regression model, the RMSE and MAE of the DAV 24-h forecast are 13.7 and 10.9 kt (1 kt ≈ 0.51 m s−1), respectively, and the skill space of the DAV is about 5.5% relative to the Statistical Hurricane Intensity Forecast model with inland decay (Decay-SHIFOR) during TC weakening periods. Considering the DAV is an independent intensity technique, it could potentially add value as a member of the suite of operational intensity forecast techniques, especially during TC weakening periods.


1994 ◽  
Vol 58 (2) ◽  
pp. 181-187 ◽  
Author(s):  
R. J. Dewhurst ◽  
C. H. Knight

AbstractTwenty lactating dairy cows were used to investigate the relationship between the site of milk storage in the udder and the short-term response to thrice-daily milking. Cisternal and alveolar milk volumes were measured 8 h after an ordinary morning milking by catheter drainage and machine milking with oxytocin respectively. The response to thrice-daily milking was assessed using a half-udder technique and the relative milk yields quotient (RMYQ). Over the first 7 days, both halves were milked twice daily (8/16 h intervals) and milk yields over the final 4 days of this period were higher for left fore/right hind (LF/RH) (12·4 (s.e. 0·85) kg/day) than for RF/LH (10·5 (s.e. 0·63) kg/day) which was milked after LF/RH throughout the experiment. Over the following week, LF/RH quarters were milked an additional time (8/8/8 h intervals) and yields over the final 4 days were increased (15•7 (s.e. 0·95) kg/day) compared with control quarters (9·8 (s.e. 0·73) kg/day). In a final 4-day period, animals were milked twice daily and half udder yields were 13·1 (s.e. 0·89) kg/day and 10•6 (s.e. 0·77) kg/day respectively. Differences between yields from the two halves of the udders were highly significant in all 3 weeks of the experiment (P < 0·001). Cistern milk yield as a proportion of total milk yield at 8 h (cistern proportion) averaged 0·170 (s.e. = 0·0275; range 0·020 to 0·334) and tended to be greater for multiparous (0·215, s.e. 0·0279) than for primiparous animals (0·118, s.e. 0·0437; P = 0·076). During the periods of twice-daily milking, the proportion of milk yielded from LF/RH quarters was not significantly related to cistern proportion (P = 0·70 and 0·43 for weeks 1 and 3 respectively). However the response to thrice-daily milking, assessed as RMYQ, was significantly related to cistern proportion both when changing up to, and down from, thrice-daily milking (P < 0·01). Animals with low cistern proportions showed larger responses to thrice-daily milking. There was a significant relationship (P < 0·05) between the responses on changing up to, and down from, thrice-daily milking. Primiparous animals tended to exhibit smaller declines on returning to twice-daily milking than multiparous animals with equivalent responses to thrice-daily milking.


2009 ◽  
Vol 137 (10) ◽  
pp. 3388-3406 ◽  
Author(s):  
Ryan D. Torn ◽  
Gregory J. Hakim

Abstract An ensemble Kalman filter based on the Weather Research and Forecasting (WRF) model is used to generate ensemble analyses and forecasts for the extratropical transition (ET) events associated with Typhoons Tokage (2004) and Nabi (2005). Ensemble sensitivity analysis is then used to evaluate the relationship between forecast errors and initial condition errors at the onset of transition, and to objectively determine the observations having the largest impact on forecasts of these storms. Observations from rawinsondes, surface stations, aircraft, cloud winds, and cyclone best-track position are assimilated every 6 h for a period before, during, and after transition. Ensemble forecasts initialized at the onset of transition exhibit skill similar to the operational Global Forecast System (GFS) forecast and to a WRF forecast initialized from the GFS analysis. WRF ensemble forecasts of Tokage (Nabi) are characterized by relatively large (small) ensemble variance and greater (smaller) sensitivity to the initial conditions. In both cases, the 48-h forecast of cyclone minimum SLP and the RMS forecast error in SLP are most sensitive to the tropical cyclone position and to midlatitude troughs that interact with the tropical cyclone during ET. Diagnostic perturbations added to the initial conditions based on ensemble sensitivity reduce the error in the storm minimum SLP forecast by 50%. Observation impact calculations indicate that assimilating approximately 40 observations in regions of greatest initial condition sensitivity produces a large, statistically significant impact on the 48-h cyclone minimum SLP forecast. For the Tokage forecast, assimilating the single highest impact observation, an upper-tropospheric zonal wind observation from a Mongolian rawinsonde, yields 48-h forecast perturbations in excess of 10 hPa and 60 m in SLP and 500-hPa height, respectively.


2016 ◽  
Vol 144 (3) ◽  
pp. 1161-1177 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Jimy Dudhia

Abstract Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model. Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.


2008 ◽  
Vol 65 (3) ◽  
pp. 714-736 ◽  
Author(s):  
Christopher A. Davis ◽  
Sarah C. Jones ◽  
Michael Riemer

Abstract Simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET). The simulations were performed in real time using the Advanced Research Weather Research and Forecasting (WRF) model (ARW), using a moving, storm-centered nest of either 4- or 1.33-km grid spacing. The six simulations, ranging from 45 to 96 h in length, provide realistic evolution of asymmetric precipitation structures, implying control by the synoptic scale, primarily through the vertical wind shear. The authors find that, as expected, the magnitude of the vortex tilt increases with increasing shear, but it is not until the shear approaches 20 m s−1 that the total vortex circulation decreases. Furthermore, the total vertical mass flux is proportional to the shear for shears less than about 20–25 m s−1, and therefore maximizes, not in the tropical phase, but rather during ET. This has important implications for predicting hurricane-induced perturbations of the midlatitude jet and its consequences on downstream predictability. Hurricane vortices in the sample resist shear by either adjusting their vertical structure through precession (Helene 2006), forming an entirely new center (Irene 2005), or rapidly developing into a baroclinic cyclone in the presence of a favorable upper-tropospheric disturbance (Maria 2005). Vortex resiliency is found to have a substantial diabatic contribution whereby vertical tilt is reduced through reduction of the primary vortex asymmetry induced by the shear. If the shear and tilt are so large that upshear subsidence overwhelms the symmetric vertical circulation of the hurricane, latent heating and precipitation will occur to the left of the tilt vector and slow precession. Such was apparent during Wilma (2005).


2018 ◽  
Vol 146 (3) ◽  
pp. 761-780 ◽  
Author(s):  
Joshua B. Wadler ◽  
Robert F. Rogers ◽  
Paul D. Reasor

Abstract The relationship between radial and azimuthal variations in the composite characteristics of convective bursts (CBs), that is, regions of the most intense upward motion in tropical cyclones (TCs), and TC intensity change is examined using NOAA P-3 tail Doppler radar. Aircraft passes collected over a 13-yr period are examined in a coordinate system rotated relative to the deep-layer vertical wind shear vector and normalized by the low-level radius of maximum winds (RMW). The characteristics of CBs are investigated to determine how the radial and azimuthal variations of their structures are related to hurricane intensity change. In general, CBs have elevated reflectivity just below the updraft axis, enhanced tangential wind below and radially outward of the updraft, enhanced vorticity near the updraft, and divergent radial flow at the top of the updraft. When examining CB structure by shear-relative quadrant, the downshear-right (upshear left) region has updrafts at the lowest (highest) altitudes and weakest (strongest) magnitudes. When further stratifying by intensity change, the greatest differences are seen upshear. Intensifying storms have updrafts on the upshear side at a higher altitude and stronger magnitude than steady-state storms. This distribution provides a greater projection of diabatic heating onto the azimuthal mean, resulting in a more efficient vortex spinup. For variations based on radial location, CBs located inside the RMW show stronger updrafts at a higher altitude for intensifying storms. Stronger and deeper updrafts inside the RMW can spin up the vortex through greater angular momentum convergence and a more efficient vortex response to the diabatic heating.


Sign in / Sign up

Export Citation Format

Share Document