scholarly journals Does Spectral Nudging Have an Effect on Dynamical Downscaling Applied in Small Regional Model Domains?

2017 ◽  
Vol 145 (10) ◽  
pp. 4303-4311 ◽  
Author(s):  
Benjamin Schaaf ◽  
Hans von Storch ◽  
Frauke Feser

Spectral nudging is a method that was developed to constrain regional climate models so that they reproduce the development of the large-scale atmospheric state, while permitting the formation of regional-scale details as conditioned by the large scales. Besides keeping the large-scale development in the interior close to a given state, the method also suppresses the emergence of ensemble variability. The method is mostly applied to reconstructions of past weather developments in regions with an extension of typically 1000–8000 km. In this article, the authors examine if spectral nudging is having an effect on simulations with model regions of the size of about 700 km × 500 km at midlatitudes located mainly over flat terrain. First two pairs of simulations are compared, two runs each with and without spectral nudging, and it is found that the four simulations are very similar, without systematic or intermittent phases of divergence. Smooth fields, which are mainly determined by spatial patterns, such as air pressure, show hardly any differences, while small-scale and heterogeneous fields such as precipitation vary strongly, mostly on the gridpoint scale, irrespective if spectral nudging is employed or not. It is concluded that the application of spectral nudging has little effect on the simulation when the model region is relatively small.

2012 ◽  
Vol 12 (8) ◽  
pp. 3601-3610 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 757
Author(s):  
Lorenzo Sangelantoni ◽  
Antonio Ricchi ◽  
Rossella Ferretti ◽  
Gianluca Redaelli

The purpose of the present study is to assess the large-scale signal modulation produced by two dynamically downscaled Seasonal Forecasting Systems (SFSs) and investigate if additional predictive skill can be achieved, compared to the driving global-scale Climate Forecast System (CFS). The two downscaled SFSs are evaluated and compared in terms of physical values and anomaly interannual variability. Downscaled SFSs consist of two two-step dynamical downscaled ensembles of NCEP-CFSv2 re-forecasts. In the first step, the CFS field is downscaled from 100 km to 60 km over Southern Europe (D01). The second downscaling, driven by the corresponding D01, is performed at 12 km over Central Italy (D02). Downscaling is performed using two different Regional Climate Models (RCMs): RegCM v.4 and WRF 3.9.1.1. SFS skills are assessed over a period of 21 winter seasons (1982–2002), by means of deterministic and probabilistic approach and with a metric specifically designed to isolate downscaling signal over different percentiles of distribution. Considering the temperature fields and both deterministic and probabilistic metrics, regional-scale SFSs consistently improve the original CFS Seasonal Anomaly Signal (SAS). For the precipitation, the added value of downscaled SFSs is mainly limited to the topography driven refinement of precipitation field, whereas the SAS is mainly “inherited” by the driving CFS. The regional-scale SFSs do not seem to benefit from the second downscaling (D01 to D02) in terms of SAS improvement. Finally, WRF and RegCM show substantial differences in both SAS and climatologically averaged fields, highlighting a different impact of the common SST driving field.


2012 ◽  
Vol 12 (1) ◽  
pp. 1191-1213 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data using Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


2011 ◽  
Vol 92 (9) ◽  
pp. 1181-1192 ◽  
Author(s):  
Frauke Feser ◽  
Burkhardt Rockel ◽  
Hans von Storch ◽  
Jörg Winterfeldt ◽  
Matthias Zahn

An important challenge in current climate modeling is to realistically describe small-scale weather statistics, such as topographic precipitation and coastal wind patterns, or regional phenomena like polar lows. Global climate models simulate atmospheric processes with increasingly higher resolutions, but still regional climate models have a lot of advantages. They consume less computation time because of their limited simulation area and thereby allow for higher resolution both in time and space as well as for longer integration times. Regional climate models can be used for dynamical down-scaling purposes because their output data can be processed to produce higher resolved atmospheric fields, allowing the representation of small-scale processes and a more detailed description of physiographic details (such as mountain ranges, coastal zones, and details of soil properties). However, does higher resolution add value when compared to global model results? Most studies implicitly assume that dynamical downscaling leads to output fields that are superior to the driving global data, but little work has been carried out to substantiate these expectations. Here a series of articles is reviewed that evaluate the benefit of dynamical downscaling by explicitly comparing results of global and regional climate model data to the observations. These studies show that the regional climate model generally performs better for the medium spatial scales, but not always for the larger spatial scales. Regional models can add value, but only for certain variables and locations—particularly those influenced by regional specifics, such as coasts, or mesoscale dynamics, such as polar lows. Therefore, the decision of whether a regional climate model simulation is required depends crucially on the scientific question being addressed.


Author(s):  
Aristita Busuioc ◽  
Alexandru Dumitrescu

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article.The concept of statistical downscaling or empirical-statistical downscaling became a distinct and important scientific approach in climate science in recent decades, when the climate change issue and assessment of climate change impact on various social and natural systems have become international challenges. Global climate models are the best tools for estimating future climate conditions. Even if improvements can be made in state-of-the art global climate models, in terms of spatial resolution and their performance in simulation of climate characteristics, they are still skillful only in reproducing large-scale feature of climate variability, such as global mean temperature or various circulation patterns (e.g., the North Atlantic Oscillation). However, these models are not able to provide reliable information on local climate characteristics (mean temperature, total precipitation), especially on extreme weather and climate events. The main reason for this failure is the influence of local geographical features on the local climate, as well as other factors related to surrounding large-scale conditions, the influence of which cannot be correctly taken into consideration by the current dynamical global models.Impact models, such as hydrological and crop models, need high resolution information on various climate parameters on the scale of a river basin or a farm, scales that are not available from the usual global climate models. Downscaling techniques produce regional climate information on finer scale, from global climate change scenarios, based on the assumption that there is a systematic link between the large-scale and local climate. Two types of downscaling approaches are known: a) dynamical downscaling is based on regional climate models nested in a global climate model; and b) statistical downscaling is based on developing statistical relationships between large-scale atmospheric variables (predictors), available from global climate models, and observed local-scale variables of interest (predictands).Various types of empirical-statistical downscaling approaches can be placed approximately in linear and nonlinear groupings. The empirical-statistical downscaling techniques focus more on details related to the nonlinear models—their validation, strengths, and weaknesses—in comparison to linear models or the mixed models combining the linear and nonlinear approaches. Stochastic models can be applied to daily and sub-daily precipitation in Romania, with a comparison to dynamical downscaling. Conditional stochastic models are generally specific for daily or sub-daily precipitation as predictand.A complex validation of the nonlinear statistical downscaling models, selection of the large-scale predictors, model ability to reproduce historical trends, extreme events, and the uncertainty related to future downscaled changes are important issues. A better estimation of the uncertainty related to downscaled climate change projections can be achieved by using ensembles of more global climate models as drivers, including their ability to simulate the input in downscaling models. Comparison between future statistical downscaled climate signals and those derived from dynamical downscaling driven by the same global model, including a complex validation of the regional climate models, gives a measure of the reliability of downscaled regional climate changes.


2006 ◽  
Vol 134 (8) ◽  
pp. 2180-2190 ◽  
Author(s):  
Frauke Feser

Abstract Regional climate models (RCMs) are a widely used tool to describe regional-scale climate variability and change. However, the added value provided by such models is not well explored so far, and claims have been made that RCMs have little utility. Here, it is demonstrated that RCMs are indeed returning significant added value. Employing appropriate spatial filters, the scale-dependent skill of a state-of-the-art RCM (with and without nudging of large scales) is examined by comparing its skill with that of the global reanalyses driving the RCM. This skill is measured by pattern correlation coefficients of the global reanalyses or the RCM simulation and, as a reference, of an operational regional weather analysis. For the spatially smooth variable air pressure the RCM improves this aspect of the simulation for the medium scales if the RCM is driven with large-scale constraints, but not for the large scales. For the regionally more structured quantity near-surface temperature the added value is more obvious. The simulation of medium-scale 2-m temperature anomaly fields amounts to an increase of the mean pattern correlation coefficient up to 30%.


2012 ◽  
Vol 16 (6) ◽  
pp. 1709-1723 ◽  
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias ◽  
A. Sordo-Ward

Abstract. An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the "best estimator" of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results.


2013 ◽  
Vol 13 (2) ◽  
pp. 263-277 ◽  
Author(s):  
C. Dobler ◽  
G. Bürger ◽  
J. Stötter

Abstract. The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


Sign in / Sign up

Export Citation Format

Share Document