scholarly journals Regional Climate Models Add Value to Global Model Data: A Review and Selected Examples

2011 ◽  
Vol 92 (9) ◽  
pp. 1181-1192 ◽  
Author(s):  
Frauke Feser ◽  
Burkhardt Rockel ◽  
Hans von Storch ◽  
Jörg Winterfeldt ◽  
Matthias Zahn

An important challenge in current climate modeling is to realistically describe small-scale weather statistics, such as topographic precipitation and coastal wind patterns, or regional phenomena like polar lows. Global climate models simulate atmospheric processes with increasingly higher resolutions, but still regional climate models have a lot of advantages. They consume less computation time because of their limited simulation area and thereby allow for higher resolution both in time and space as well as for longer integration times. Regional climate models can be used for dynamical down-scaling purposes because their output data can be processed to produce higher resolved atmospheric fields, allowing the representation of small-scale processes and a more detailed description of physiographic details (such as mountain ranges, coastal zones, and details of soil properties). However, does higher resolution add value when compared to global model results? Most studies implicitly assume that dynamical downscaling leads to output fields that are superior to the driving global data, but little work has been carried out to substantiate these expectations. Here a series of articles is reviewed that evaluate the benefit of dynamical downscaling by explicitly comparing results of global and regional climate model data to the observations. These studies show that the regional climate model generally performs better for the medium spatial scales, but not always for the larger spatial scales. Regional models can add value, but only for certain variables and locations—particularly those influenced by regional specifics, such as coasts, or mesoscale dynamics, such as polar lows. Therefore, the decision of whether a regional climate model simulation is required depends crucially on the scientific question being addressed.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 260
Author(s):  
Mario Raffa ◽  
Alfredo Reder ◽  
Marianna Adinolfi ◽  
Paola Mercogliano

Recently, the European Centre for Medium Range Weather Forecast (ECMWF) has released a new generation of reanalysis, acknowledged as ERA5, representing at the present the most plausible picture for the current climate. Although ERA5 enhancements, in some cases, its coarse spatial resolution (~31 km) could still discourage a direct use of precipitation fields. Such a gap could be faced dynamically downscaling ERA5 at convection permitting scale (resolution < 4 km). On this regard, the selection of the most appropriate nesting strategy (direct one-step against nested two-step) represents a pivotal issue for saving time and computational resources. Two questions may be raised within this context: (i) may the dynamical downscaling of ERA5 accurately represents past precipitation patterns? and (ii) at what extent may the direct nesting strategy performances be adequately for this scope? This work addresses these questions evaluating two ERA5-driven experiments at ~2.2 km grid spacing over part of the central Europe, run using the regional climate model COSMO-CLM with different nesting strategies, for the period 2007–2011. Precipitation data are analysed at different temporal and spatial scales with respect to gridded observational datasets (i.e., E-OBS and RADKLIM-RW) and existing reanalysis products (i.e., ERA5-Land and UERRA). The present work demonstrates that the one-step experiment tendentially outperforms the two-step one when there is no spectral nudging, providing results at different spatial and temporal scales in line with the other existing reanalysis products. However, the results can be highly model and event dependent as some different aspects might need to be considered (i.e., the nesting strategies) during the configuration phase of the climate experiments. For this reason, a clear and consolidated recommendation on this topic cannot be stated. Such a level of confidence could be achieved in future works by increasing the number of cities and events analysed. Nevertheless, these promising results represent a starting point for the optimal experimental configuration assessment, in the frame of future climate studies.


2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

&lt;p&gt;Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.&lt;/p&gt;&lt;p&gt;Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.&lt;/p&gt;


2014 ◽  
Vol 27 (17) ◽  
pp. 6799-6818 ◽  
Author(s):  
Christian Kerkhoff ◽  
Hans R. Künsch ◽  
Christoph Schär

Abstract Climate scenarios make implicit or explicit assumptions about the extrapolation of climate model biases from current to future time periods. Such assumptions are inevitable because of the lack of future observations. This manuscript reviews different bias assumptions found in the literature and provides measures to assess their validity. The authors explicitly separate climate change from multidecadal variability to systematically analyze climate model biases in seasonal and regional surface temperature averages, using global and regional climate models (GCMs and RCMs) from the Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project over Europe. For centennial time scales, it is found that a linear bias extrapolation for GCMs is best supported by the analysis: that is, it is generally not correct to assume that model biases are independent of the climate state. Results also show that RCMs behave markedly differently when forced with different drivers. RCM and GCM biases are not additive, and there is a significant interaction component in the bias of the RCM–GCM model chain that depends on both the RCM and GCM considered. This result questions previous studies that deduce biases (and ultimately projections) in RCM–GCM combinations from reanalysis-driven simulations. The authors suggest that the aforementioned interaction component derives from the refined RCM representation of dynamical and physical processes in the lower troposphere, which may nonlinearly depend upon the larger-scale circulation stemming from the driving GCM. The authors’ analyses also show that RCMs provide added value and that the combined RCM–GCM approach yields, in general, smaller biases in seasonal surface temperature and interannual variability, particularly in summer and even for spatial scales that are, in principle, well resolved by the GCMs.


2010 ◽  
Vol 7 (2) ◽  
pp. 1821-1848 ◽  
Author(s):  
W. Buytaert ◽  
M. Vuille ◽  
A. Dewulf ◽  
R. Urrutia ◽  
A. Karmalkar ◽  
...  

Abstract. Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs) are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.


2018 ◽  
Author(s):  
Christian Reszler ◽  
Matthew Blasie Switanek ◽  
Heimo Truhetz

Abstract. Small scale floods are a consequence of high precipitation rates in small areas that can occur along frontal activity and convective storms. This situation is expected to become more severe due to a warming climate, when single precipitation events resulting from deep convection become more intense (Super Clausius-Clapeyron effect). Regional climate model (RCM) evaluations and inter-comparisons have shown that there is evidence that an increase in regional climate model resolution and in particular, at the convection permitting scale, will lead to a better representation of the spatial and temporal characteristics of heavy precipitation at small and medium scales. In this paper, the benefit of grid size reduction and bias correction in climate models are evaluated in their ability to properly represent flood generation in small and medium sized catchments. The climate models are coupled with a distributed hydrological model. The study area is the Eastern Alps, where small scale storms often occur along with heterogeneous rainfall distributions leading to a very local flash flood generation. The work is carried out in a small multi-model (ensemble) framework using two different RCMs (CCLM and WRF) in different grid sizes. Bias correction is performed by the use of the novel Scaled Distribution Mapping (SDM) method. The results show, that for small catchments (


2020 ◽  
Vol 59 (11) ◽  
pp. 1793-1807 ◽  
Author(s):  
Helene Birkelund Erlandsen ◽  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Marie Pontoppidan

AbstractWe used empirical–statistical downscaling in a pseudoreality context, in which both large-scale predictors and small-scale predictands were based on climate model results. The large-scale conditions were taken from a global climate model, and the small-scale conditions were taken from dynamical downscaling of the same global model with a convection-permitting regional climate model covering southern Norway. This hybrid downscaling approach, a “perfect model”–type experiment, provided 120 years of data under the CMIP5 high-emission scenario. Ample calibration samples made rigorous testing possible, enabling us to evaluate the effect of empirical–statistical model configurations and predictor choices and to assess the stationarity of the statistical models by investigating their sensitivity to different calibration intervals. The skill of the statistical models was evaluated in terms of their ability to reproduce the interannual correlation and long-term trends in seasonal 2-m temperature T2m, wet-day frequency fw, and wet-day mean precipitation μ. We found that different 30-yr calibration intervals often resulted in differing statistical models, depending on the specific choice of years. The hybrid downscaling approach allowed us to emulate seasonal mean regional climate model output with a high spatial resolution (0.05° latitude and 0.1° longitude grid) for up to 100 GCM runs while circumventing the issue of short calibration time, and it provides a robust set of empirically downscaled GCM runs.


2016 ◽  
Author(s):  
Andreas Dobler ◽  
Jan Erik Haugen ◽  
Rasmus Emil Benestad

Abstract. Regional climate models can provide estimates for quantities that are difficult to study in empirical studies, such as cloud cover, wind, sea-ice or dependencies between variables. In this study, the regional climate model COSMO-CLM was used to simulate local climate conditions over the Barents region and provide projections for the three emission scenarios RCP2.6, RCP4.5 and RCP8.5. The results indicate that the most pronounced local warming can be expected in winter in the high Arctic near the present sea-ice border. The changes reach up to 20K, resulting in future temperatures close to melting. Similar spatial patterns are seen for changes in precipitation and wind in all scenarios, but with different amplitudes. Precipitation sensitivities, however, show the highest values along the west coast of Norway and in the Arctic during summer. For clouds, the projections show a decrease in winter mean cloud cover over sea and an increase over land, dominated by changes in low layer clouds. Over the Barents sea, convective cloud fraction is projected to increase, together with an increases in convective and total precipitation. In contrast to the COSMO-CLM and two other regional climate models taken into account, the ensemble mean of the driving global models shows an increasing trend in total cloud cover over the Barents sea. An analysis of the opposing trends reveals that there is an added value in the regional climate model projections for the Barents region.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 571
Author(s):  
Günther Heinemann

The parameterization of the boundary layer is a challenge for regional climate models of the Arctic. In particular, the stable boundary layer (SBL) over Greenland, being the main driver for substantial katabatic winds over the slopes, is simulated differently by different regional climate models or using different parameterizations of the same model. However, verification data sets with high-resolution profiles of the katabatic wind are rare. In the present paper, detailed aircraft measurements of profiles in the katabatic wind and automatic weather station data during the experiment KABEG (Katabatic wind and boundary-layer front experiment around Greenland) in April and May 1997 are used for the verification of the regional climate model COSMO-CLM (CCLM) nested in ERA-Interim reanalyses. CCLM is used in a forecast mode for the whole Arctic with 15 km resolution and is run in the standard configuration of SBL parameterization and with modified SBL parameterization. In the modified version, turbulent kinetic energy (TKE) production and the transfer coefficients for turbulent fluxes in the SBL are reduced, leading to higher stability of the SBL. This leads to a more realistic representation of the daily temperature cycle and of the SBL structure in terms of temperature and wind profiles for the lowest 200 m.


2007 ◽  
Vol 88 (9) ◽  
pp. 1395-1410 ◽  
Author(s):  
Jeremy S. Pal ◽  
Filippo Giorgi ◽  
Xunqiang Bi ◽  
Nellie Elguindi ◽  
Fabien Solmon ◽  
...  

Regional climate models are important research tools available to scientists around the world, including in economically developing nations (EDNs). The Earth Systems Physics (ESP) group of the Abdus Salam International Centre for Theoretical Physics (ICTP) maintains and distributes a state-of-the-science regional climate model called the ICTP Regional Climate Model version 3 (RegCM3), which is currently being used by a large research community for a diverse range of climate-related studies. The RegCM3 is the central, but not only, tool of the ICTP-maintained Regional Climate Research Network (RegCNET) aimed at creating south–south and north–south scientific interactions on the topic of climate and associated impacts research and modeling. In this paper, RegCNET, RegCM3, and illustrative results from RegCM3 benchmark simulations applied over south Asia, Africa, and South America are presented. It is shown that RegCM3 performs reasonably well over these regions and is therefore useful for climate studies in EDNs.


Sign in / Sign up

Export Citation Format

Share Document