Practical Uncertainties in the Limited Predictability of the Record-Breaking Intensification of Hurricane Patricia (2015)

2019 ◽  
Vol 147 (10) ◽  
pp. 3535-3556 ◽  
Author(s):  
Robert G. Nystrom ◽  
Fuqing Zhang

Abstract Hurricane Patricia (2015) was a record-breaking tropical cyclone that was difficult to forecast in real time by both operational numerical weather prediction models and operational forecasters. The current study examines the potential for improving intensity prediction for extreme cases like Hurricane Patricia. We find that Patricia’s intensity predictability is potentially limited by both initial conditions, related to the data assimilation, and model errors. First, convection-permitting assimilation of airborne Doppler radar radial velocity observations with an ensemble Kalman filter (EnKF) demonstrates notable intensity forecast improvements over assimilation of conventional observations alone. Second, decreasing the model horizontal grid spacing to 1 km and reducing the surface drag coefficient at high wind speed in the parameterization of the sea surface–atmosphere exchanges is also shown to notably improve intensity forecasts. The practical predictability of Patricia, its peak intensity, rapid intensification, and the underlying dynamics are further investigated through a high-resolution 60-member ensemble initialized with realistic initial condition uncertainties represented by the EnKF posterior analysis perturbations. Most of the ensemble members are able to predict the peak intensity of Patricia, but with greater uncertainty in the timing and rate of intensification; some members fail to reach the ultimate peak intensity before making landfall. Ensemble sensitivity analysis shows that initial differences in the region beyond the radius of maximum wind contributes the most to the differences between ensemble members in Patricia’s intensification. Ensemble members with stronger initial primary and secondary circulations beyond the radius of maximum wind intensify earlier, are able to maintain the intensification process for longer, and thus reach a greater and earlier peak intensity.

2012 ◽  
Vol 140 (1) ◽  
pp. 77-99 ◽  
Author(s):  
Robert Rogers ◽  
Sylvie Lorsolo ◽  
Paul Reasor ◽  
John Gamache ◽  
Frank Marks

Abstract The multiscale inner-core structure of mature tropical cyclones is presented via the use of composites of airborne Doppler radar analyses. The structure of the axisymmetric vortex and the convective and turbulent-scale properties within this axisymmetric framework are shown to be consistent with many previous studies focusing on individual cases or using different airborne data sources. On the vortex scale, these structures include the primary and secondary circulations, eyewall slope, decay of the tangential wind with height, low-level inflow layer and region of enhanced outflow, radial variation of convective and stratiform reflectivity, eyewall vorticity and divergence fields, and rainband signatures in the radial wind, vertical velocity, vorticity, and divergence composite mean and variance fields. Statistics of convective-scale fields and how they vary as a function of proximity to the radius of maximum wind show that the inner eyewall edge is associated with stronger updrafts and higher reflectivity and vorticity in the mean and have broader distributions for these fields compared with the outer radii. In addition, the reflectivity shows a clear characteristic of stratiform precipitation in the outer radii and the vorticity distribution is much more positively skewed along the inner eyewall than it is in the outer radii. Composites of turbulent kinetic energy (TKE) show large values along the inner eyewall, in the hurricane boundary layer, and in a secondary region located at about 2–3 times the radius of maximum wind. This secondary peak in TKE is also consistent with a peak in divergence and in the variability of vorticity, and they suggest the presence of rainbands at this radial band.


2009 ◽  
Vol 137 (9) ◽  
pp. 2758-2777 ◽  
Author(s):  
Qingnong Xiao ◽  
Xiaoyan Zhang ◽  
Christopher Davis ◽  
John Tuttle ◽  
Greg Holland ◽  
...  

Abstract Initialization of the hurricane vortex in weather prediction models is vital to intensity forecasts out to at least 48 h. Airborne Doppler radar (ADR) data have sufficiently high horizontal and vertical resolution to resolve the hurricane vortex and its imbedded structures but have not been extensively used in hurricane initialization. Using the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation (3DVAR) system, the ADR data are assimilated to recover the hurricane vortex dynamic and thermodynamic structures at the WRF model initial time. The impact of the ADR data on three hurricanes, Jeanne (2004), Katrina (2005) and Rita (2005), are examined during their rapid intensification and subsequent weakening periods before landfall. With the ADR wind data assimilated, the three-dimensional winds in the hurricane vortex become stronger and the maximum 10-m winds agree better with independent estimates from best-track data than without ADR data assimilation. Through the multivariate incremental structure in WRF 3DVAR analysis, the central sea level pressures (CSLPs) for the three hurricanes are lower in response to the stronger vortex at initialization. The size and inner-core structure of each vortex are adjusted closer to observations of these attributes. Addition of reflectivity data in assimilation produces cloud water and rainwater analyses in the initial vortex. The temperature and moisture are also better represented in the hurricane initialization. Forty-eight-hour forecasts are conducted to evaluate the impact of ADR data using the Advanced Research Hurricane WRF (AHW), a derivative of the Advanced Research WRF (ARW) model. Assimilation of ADR data improves the hurricane-intensity forecasts. Vortex asymmetries, size, and rainbands are also simulated better. Hurricane initialization with ADR data is quite promising toward reducing intensity forecast errors at modest computational expense.


2001 ◽  
Vol 8 (6) ◽  
pp. 357-371 ◽  
Author(s):  
D. Orrell ◽  
L. Smith ◽  
J. Barkmeijer ◽  
T. N. Palmer

Abstract. Operational forecasting is hampered both by the rapid divergence of nearby initial conditions and by error in the underlying model. Interest in chaos has fuelled much work on the first of these two issues; this paper focuses on the second. A new approach to quantifying state-dependent model error, the local model drift, is derived and deployed both in examples and in operational numerical weather prediction models. A simple law is derived to relate model error to likely shadowing performance (how long the model can stay close to the observations). Imperfect model experiments are used to contrast the performance of truncated models relative to a high resolution run, and the operational model relative to the analysis. In both cases the component of forecast error due to state-dependent model error tends to grow as the square-root of forecast time, and provides a major source of error out to three days. These initial results suggest that model error plays a major role and calls for further research in quantifying both the local model drift and expected shadowing times.


2014 ◽  
Vol 21 (5) ◽  
pp. 1027-1041 ◽  
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Geostationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), and improving initial conditions during several data assimilation cycles. However, the 6 h forecast after the assimilation did not show a clear improvement in terms of root mean square (RMS) errors.


2016 ◽  
Vol 144 (5) ◽  
pp. 1909-1921 ◽  
Author(s):  
Roman Schefzik

Contemporary weather forecasts are typically based on ensemble prediction systems, which consist of multiple runs of numerical weather prediction models that vary with respect to the initial conditions and/or the parameterization of the atmosphere. Ensemble forecasts are frequently biased and show dispersion errors and thus need to be statistically postprocessed. However, current postprocessing approaches are often univariate and apply to a single weather quantity at a single location and for a single prediction horizon only, thereby failing to account for potentially crucial dependence structures. Nonparametric multivariate postprocessing methods based on empirical copulas, such as ensemble copula coupling or the Schaake shuffle, can address this shortcoming. A specific implementation of the Schaake shuffle, called the SimSchaake approach, is introduced. The SimSchaake method aggregates univariately postprocessed ensemble forecasts using dependence patterns from past observations. Specifically, the observations are taken from historical dates at which the ensemble forecasts resembled the current ensemble prediction with respect to a specific similarity criterion. The SimSchaake ensemble outperforms all reference ensembles in an application to ensemble forecasts for 2-m temperature from the European Centre for Medium-Range Weather Forecasts.


2014 ◽  
Vol 1 (1) ◽  
pp. 917-952
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Goestationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), improving initial conditions, and partially improving WRF-NMM forecasts during several data assimilation cycles.


2021 ◽  
Author(s):  
Ajay Bankar ◽  
Rakesh Vasudevan

<p><span>Extreme Rainfall Events (EREs) in India has increased many folds in recent decades. These severe weather events are generally destructive in nature causing flash floods, catastrophic loss of life and property over densely populated urban cities. Various cities in Karnataka, a southern state in India, witnessed many EREs recently. Appropriate advanced warning systems to predict these events are crucial for preparedness of mitigation strategy to reduce human casualty and socio economic loss. Mesoscale models are essential tools for developing an integrated platform for disaster warning and management. From a stakeholder/user pint of view, primary requirement to tackle ERE related damages is accurate prediction of the observed rainfall location, coverage and intensity in advance. Weather prediction models have inherent limitations imposed primarily by approximations in the model and inadequacies in data. Hence, it is important to evaluate the skill of these models for many cases under different synoptic conditions to quantify model skill before using them for operational applications. The objective of the study is to evaluate performance of the Weather Research and Forecasting (WRF) model for several ERE cases in Karnataka at different model initial conditions. The EREs were identified from the distribution of rainfall events over different regions in Karnataka and those events comes under 1% probability were considered. We examined 38 ERE’s distributed over Karnataka for the period June to November for the years 2015-2019. WRF model is configured with 3 nested domains with outer, inner and innermost domains having resolution of 12 km, 9 km and 3 km respectively. Two sets of simulations are conducted in this study, i) staring at 12 hours prior to the ERE day (i.e. -1200 UTC) & ii) starting at 0000 UTC of the ERE day. Performance of the WRF model forecast is validated against 15 minutes rainfall observations from ~6000 rain gauge stations over Karnataka. During initial hours forecasts initiated at 1200 UTC has distinct advantage in terms of accuracy compared to those initiated at 0000 UTC for most of the cases. In general, model underpredict EREs and underprediction is relatively low for forecasts initiated at 12 00 UTC.</span></p>


2007 ◽  
Vol 22 (6) ◽  
pp. 1304-1318 ◽  
Author(s):  
William Y. Y. Cheng ◽  
W. James Steenburgh

Abstract Despite improvements in numerical weather prediction, model errors, particularly near the surface, are unavoidable due to imperfect model physics, initial conditions, and boundary conditions. Here, three techniques for improving the accuracy of 2-m temperature, 2-m dewpoint, and 10-m wind forecasts by the Eta/North American Meso (NAM) Model are evaluated: (i) traditional model output statistics (ETAMOS), requiring a relatively long training period; (ii) the Kalman filter (ETAKF), requiring a relatively short initial training period (∼4–5 days); and (iii) 7-day running mean bias removal (ETA7DBR), requiring a 7-day training period. Forecasts based on the ETAKF and ETA7DBR methods were produced for more than 2000 MesoWest observing sites in the western United States. However, the evaluation presented in this study was based on subjective forecaster assessments and objective verification at 145 ETAMOS stations during summer 2004 and winter 2004/05. For the 145-site sample, ETAMOS produces the most accurate cumulative temperature, dewpoint, and wind speed and direction forecasts, followed by ETAKF and ETA7DBR, which have similar accuracy. Selected case studies illustrate that ETAMOS produces superior forecasts when model biases change dramatically, such as during large-scale pattern changes, but that ETAKF and ETA7DBR produce superior forecasts during quiescent cool season patterns when persistent valley and basin cold pools exist. During quiescent warm season patterns, the accuracy of all three methods is similar. Although the improved ETAKF cold pool forecasts are noteworthy, particularly since the Kalman filter can help better define cold pool structure by producing forecasts for locations without long-term records, alternative approaches are needed to improve forecasts during periods when model biases change dramatically.


2018 ◽  
Vol 146 (12) ◽  
pp. 4015-4038
Author(s):  
Michael A. Herrera ◽  
Istvan Szunyogh ◽  
Adam Brainard ◽  
David D. Kuhl ◽  
Karl Hoppel ◽  
...  

Abstract A regionally enhanced global (REG) data assimilation (DA) method is proposed. The technique blends high-resolution model information from a single or multiple limited-area model domains with global model and observational information to create a regionally enhanced analysis of the global atmospheric state. This single analysis provides initial conditions for both the global and limited-area model forecasts. The potential benefits of the approach for operational data assimilation are (i) reduced development cost, (ii) reduced overall computational cost, (iii) improved limited-area forecast performance from the use of global information about the atmospheric flow, and (iv) improved global forecast performance from the use of more accurate model information in the limited-area domains. The method is tested by an implementation on the U.S. Navy’s four-dimensional variational global data assimilation system and global and limited-area numerical weather prediction models. The results of the monthlong forecast experiments suggest that the REG DA approach has the potential to deliver the desired benefits.


2014 ◽  
Vol 18 (3) ◽  
pp. 31-39 ◽  
Author(s):  
Katarzyna Ośródka ◽  
Jan Szturc ◽  
Bogumił Jakubiak ◽  
Anna Jurczyk

Abstract The paper is focused on the processing of 3D weather radar data to minimize the impact of a number of errors from different sources, both meteorological and non-meteorological. The data is also quantitatively characterized in terms of its quality. A set of dedicated algorithms based on analysis of the reflectivity field pattern is described. All the developed algorithms were tested on data from the Polish radar network POLRAD. Quality control plays a key role in avoiding the introduction of incorrect information into applications using radar data. One of the quality control methods is radar data assimilation in numerical weather prediction models to estimate initial conditions of the atmosphere. The study shows an experiment with quality controlled radar data assimilation in the COAMPS model using the ensemble Kalman filter technique. The analysis proved the potential of radar data for such applications; however, further investigations will be indispensable.


Sign in / Sign up

Export Citation Format

Share Document