Analysis and Simulations of a Heavy Rainfall Event Associated with the Passage of a Shallow Front over Northern Taiwan on 2 June 2017

Abstract From 0200 to 1000 LST 2 June 2017, the shallow, East-West oriented Mei-Yu front (< 1 km) cannot move over the Yang-Ming Mountains (with peaks ∼ 1120 m) when it first arrives. The postfrontal cold air at the surface is deflected by the Yang-Ming Mountains and moves through the Keelung River and Tamsui River valleys into the Taipei Basin. The shallow northerly winds are anchored along the northern side of the Yang-Ming Mountains for 8 hours. In addition, the southwesterly barrier jet with maximum winds in the 900–950-hPa layer brings in abundant moisture and converges with the northwesterly flow in the southwestern flank of the Mei-Yu frontal cyclone. Therefore, torrential rain (> 600 mm) occurs over the northern side of the Yang-Ming Mountains. From 1100 to 1200 LST, with the gradual deepening of the postfrontal cold air, the front finally passes over the Yang-Ming Mountains and arrives at the Taipei Basin, which results in an E-W oriented rainband with the rainfall maxima over the northwestern coast and Taipei Basin. From 1300 to 1400 LST, the frontal rainband continues to move southward with rainfall over the northwestern slopes of the Snow Mountains. In the prefrontal southwesterly flow, the orographic lifting of the moisture-laden low-level winds results in heavy rainfall on the southwestern slopes of the Snow Mountains and the Central Mountain Range. With the terrain of the Yang-Ming Mountains removed in the high-resolution model, the Mei-Yu front moves quickly southward without a rainfall maximum over the northern tip of Taiwan.

2010 ◽  
Vol 88 (4) ◽  
pp. 649-671 ◽  
Author(s):  
Ching-Sen CHEN ◽  
Che-Ling LIU ◽  
Ming-Cheng YEN ◽  
Chih-Ying CHEN ◽  
Pay-Liam LIN ◽  
...  

2011 ◽  
Vol 139 (9) ◽  
pp. 2854-2875 ◽  
Author(s):  
Chung-Chieh Wang ◽  
George Tai-Jen Chen ◽  
Shin-Yi Huang

In this study, the heavy-rainfall event over central Taiwan during the mei-yu season on 8 June 2007 is investigated, with an emphasis on the triggering mechanism for the deep convection that produced the rain. Observations indicate that there existed two lines of forcing with convection prior to the rain: one over the northern Taiwan Strait along the mei-yu front and the other over the southern Taiwan Strait. Yet, the convection in question developed over the central strait between these two lines, in an unstable environment with strong westerly vertical wind shear. This motivated the authors to carry out the present study. The Cloud-Resolving Storm Simulation (CReSS) of Nagoya University was used and the event was reproduced at a horizontal grid size of 2 km, including the initiation of new convection over the central strait at the correct location and time. The model results suggest a crucial role played by the series of active, persistent, and propagating storms in the southern strait (along the aforementioned second forcing line). On their back (northern) side, these storms repeatedly produced pulses of cold outflow that traveled toward the north-northeast with positive pressure perturbation. With characteristics of gravity waves, the perturbation propagated faster than the cold air and the associated increase in forward-directed (horizontal) pressure gradient force led to northward acceleration of near-surface flow (by up to 4–5 m s−1 h−1). The stronger southerly flow in turn enhanced downstream convergence, and the deep convection was triggered in the central strait near the arrival of the gravity wave ahead of the cold air. When the convection moved eastward over Taiwan, heavy rainfall resulted. The mechanism presented here for remote triggering of convection over the ocean has not been documented near Taiwan during the mei-yu season. With a better understanding about the behavior of convection, these results can contribute to the improvement of quantitative precipitation forecasts and hazard prevention and reduction.


2007 ◽  
Vol 46 (9) ◽  
pp. 1324-1340 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Shih-Yu Wang ◽  
Ming-Cheng Yen

Abstract Located in northern Taiwan, Taipei is a metropolis surrounded by hills and mountains that form a basin in which two river valleys funnel the surface airflow of this basin to the open sea. Because of the southwest monsoon, summer is a dry season in northern Taiwan but is the season of maximum rainfall in the Taipei basin. This unusual summer rainfall maximum in Taipei is largely produced by afternoon/evening thunderstorms—in particular, on the downwind side and slopes of mountains south of the city. The population in the city of Taipei and the county in which this city is located has more than tripled during the past four decades while land use for building and surface construction increased by a factor of 3. This urbanization may contribute to an increase of 1.5°C in daily mean temperature, a decrease of 1°C in daily temperature range, an increase of more than 67% in the frequency of afternoon/evening thunderstorms, and an increase of 77% in rainfall generated by thunderstorms. These findings may explain the reduction in the water supply deficit to the Taipei metropolitan area and the ground subsidence of the Taipei basin caused by the excessive use of groundwater. Results of this study also provide important information for urban planning and pollution control and for management of the increasing traffic hazards caused by the enhanced thunderstorm activity and rainfall.


2011 ◽  
Vol 26 (3) ◽  
pp. 280-300 ◽  
Author(s):  
Chuan-Chi Tu ◽  
Yi-Leng Chen

Abstract During the 2006 wet period, as eastward-moving transient disturbances passed through a semipermanent low pressure system west of Hawaii, southerly winds east of the low strengthened bringing in higher than usual amounts of moisture from the deep tropics to Hawaii. All five heavy rainfall episodes during the wet period occurred during a southerly wind regime. Favorable conditions for the development of the Kahala Mall flood case on 31 March 2006 are examined. A high low-level θe axis across Hawaii indicated the existence of convective instability over Hawaii. A transient midlatitude trough extending southward merged with the semipermanent subtropical trough. The tropopause folding associated with the deepening subtropical trough contributed to the spinup of the Kona low. The advection of high-PV air in the upper troposphere enhanced upward motion downstream over Hawaii. The Weather Research and Forecasting Model (WRF) simulation shows that latent heat release contributed to an eastward shift of the moisture tongue and enhanced moisture convergence at low levels. The horizontal distributions of instability indices, especially the K index, from WRF modeling can provide useful forecast guidance for the development of heavy rainfall. On 31 March, heavy rainfall occurred on the lee side of the Ko’olau Mountain Range with maximum rainfall at the summit as a convective line followed by an intense storm moved inland along the south shore and continued to advance northward through the range. As the convective cells moved across the mountain range, radar echoes intensified with deeper echo tops and higher vertically integrated liquid water content.


2013 ◽  
Vol 24 (6) ◽  
pp. 999 ◽  
Author(s):  
Chih-Ying Chen ◽  
Yi-Leng Chen ◽  
Ching-Sen Chen ◽  
Pay-Liam Lin ◽  
Che-Ling Liu

2013 ◽  
Vol 140 (681) ◽  
pp. 1189-1197 ◽  
Author(s):  
J. A. Waller ◽  
S. L. Dance ◽  
A. S. Lawless ◽  
N. K. Nichols ◽  
J. R. Eyre

Sign in / Sign up

Export Citation Format

Share Document