Performance of a Dynamic Initialization Scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC)

2011 ◽  
Vol 26 (5) ◽  
pp. 650-663 ◽  
Author(s):  
Eric A. Hendricks ◽  
Melinda S. Peng ◽  
Xuyang Ge ◽  
Tim Li

Abstract A dynamic initialization scheme for tropical cyclone structure and intensity in numerical prediction systems is described and tested. The procedure involves the removal of the analyzed vortex and, then, insertion of a new vortex that is dynamically initialized to the observed surface pressure into the numerical model initial conditions. This new vortex has the potential to be more balanced, and to have a more realistic boundary layer structure than by adding synthetic data in the data assimilation procedure to initialize the tropical cyclone in a model. The dynamic initialization scheme was tested on multiple tropical cyclones during 2008 and 2009 in the North Atlantic and western North Pacific Ocean basins using the Naval Research Laboratory’s tropical cyclone version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS-TC). The use of this initialization procedure yielded significant improvements in intensity forecasts, with no degradation in track performance. Mean absolute errors in the maximum sustained surface wind were reduced by approximately 5 kt for all lead times up to 72 h.

2011 ◽  
Vol 24 (12) ◽  
pp. 2963-2982 ◽  
Author(s):  
Andrea Alessandri ◽  
Andrea Borrelli ◽  
Silvio Gualdi ◽  
Enrico Scoccimarro ◽  
Simona Masina

Abstract This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, particularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geographical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.


Author(s):  
William A. Komaromi ◽  
Patrick A. Reinecke ◽  
James D. Doyle ◽  
Jonathan R. Moskaitis

AbstractThe 11-member Coupled Ocean/Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC) ensemble has been developed by the Naval Research Laboratory (NRL) to produce probabilistic forecasts of tropical cyclone (TC) track, intensity and structure. All members run with a storm-following inner grid at convection-permitting 4-km horizontal resolution. The COAMPS-TC ensemble is constructed via a combination of perturbations to initial and boundary conditions, the initial vortex, and model physics to account for a variety of different sources of uncertainty that affect track and intensity forecasts. Unlike global model ensembles, which do a reasonable job capturing track uncertainty but not intensity, mesoscale ensembles such as the COAMPS-TC ensemble are necessary to provide a realistic intensity forecast spectrum.The initial and boundary condition perturbations are responsible for generating the majority of track spread at all lead times, as well as the intensity spread from 36-120 h. The vortex and physics perturbations are necessary to produce meaningful spread in the intensity prediction from 0-36 h. In a large sample of forecasts from 2014-2017, the ensemble-mean track and intensity forecast is superior to the unperturbed control forecast at all lead times, demonstrating a clear advantage to running an ensemble versus a deterministic forecast. The spread-skill relationship of the ensemble is also examined, and is found to be very well calibrated for track, but is under-dispersive for intensity. Using a mixture of lateral boundary conditions derived from different global models is found to improve upon the spread-skill score for intensity, but it is hypothesized that additional physics perturbations will be necessary to achieve realistic ensemble spread.


2020 ◽  
Vol 148 (10) ◽  
pp. 4101-4116
Author(s):  
Yi-Huan Hsieh ◽  
Cheng-Shang Lee ◽  
Hsu-Feng Teng

AbstractA total of 14 tropical cyclones (TCs) that formed from 2008 to 2009 over the western North Pacific are simulated to examine the effects that environmental low-frequency and high-frequency vorticity (more than 10 days and less than 10 days, respectively) have on the formations of TCs [where the maximum surface wind ~25 kt (≈13 m s−1)]. Results show that all the simulations can reproduce the formation of a TC in an environment with a large 850-hPa low-frequency vorticity, even if the high-frequency parts are removed from the initial conditions. High-frequency vorticity mainly affects the timing and location of TC formation in such an environment. The 850-hPa vorticity is also analyzed in 3854 tropical cloud clusters that developed in 1981–2009 and may or may not have formed TCs; this reveals that the strength of the low-frequency vorticity is a crucial factor in TC formation. A tropical cloud cluster is expected to develop into a TC in an environment favorable for TC formation in the presence of a large 850-hPa low-frequency vorticity. The lead time for forecasting the formation of a TC can probably be extended under such conditions.


2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2010 ◽  
Vol 25 (2) ◽  
pp. 526-544 ◽  
Author(s):  
Carolyn A. Reynolds ◽  
James D. Doyle ◽  
Richard M. Hodur ◽  
Hao Jin

Abstract As part of The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research’s (ONR’s) Tropical Cyclone Structure-08 (TCS-08) experiments, a variety of real-time products were produced at the Naval Research Laboratory during the field campaign that took place from August through early October 2008. In support of the targeted observing objective, large-scale targeting guidance was produced twice daily using singular vectors (SVs) from the Navy Operational Global Atmospheric Prediction System (NOGAPS). These SVs were optimized for fixed regions centered over Guam, Taiwan, Japan, and two regions over the North Pacific east of Japan. During high-interest periods, flow-dependent SVs were also produced. In addition, global ensemble forecasts were produced and were useful for examining the potential downstream impacts of extratropical transitions. For mesoscale models, TC forecasts were produced using a new version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed specifically for tropical cyclone prediction (COAMPS-TC). In addition to the COAMPS-TC forecasts, mesoscale targeted observing products were produced using the COAMPS forecast and adjoint system twice daily, centered on storms of interest, at a 40-km horizontal resolution. These products were produced with 24-, 36-, and 48-h lead times. The nonhydrostatic adjoint system used during T-PARC/TCS-08 contains an exact adjoint to the explicit microphysics. An adaptive response function region was used to target favorable areas for tropical cyclone formation and development. Results indicate that forecasts of tropical cyclones in the western Pacific are very sensitive to the initial state.


2019 ◽  
Vol 34 (4) ◽  
pp. 905-922 ◽  
Author(s):  
Timothy L. Olander ◽  
Christopher S. Velden

Abstract The advanced Dvorak technique (ADT) is used operationally by tropical cyclone forecast centers worldwide to help estimate the intensity of tropical cyclones (TCs) from operational geostationary meteorological satellites. New enhancements to the objective ADT have been implemented by the algorithm development team to further expand its capabilities and precision. The advancements include the following: 1) finer tuning to aircraft-based TC intensity estimates in an expanded development sample, 2) the incorporation of satellite-based microwave information into the intensity estimation scheme, 3) more sophisticated automated TC center-fixing routines, 4) adjustments to the intensity estimates for subtropical systems and TCs undergoing extratropical transition, and 5) addition of a surface wind radii estimation routine. The goals of these upgrades and others are to provide TC analysts/forecasters with an expanded objective guidance tool to more accurately estimate the intensity of TCs and those storms forming from, or converting into, hybrid/nontropical systems. The 2018 TC season is used to illustrate the performance characteristics of the upgraded ADT.


2018 ◽  
Vol 11 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Matthew J. Widlansky ◽  
H. Annamalai ◽  
Stephen B. Gingerich ◽  
Curt D. Storlazzi ◽  
John J. Marra ◽  
...  

Abstract Potential changing climate threats in the tropical and subtropical North Pacific Ocean were assessed, using coupled ocean–atmosphere and atmosphere-only general circulation models, to explore their response to projected increasing greenhouse gas emissions. Tropical cyclone occurrence, described by frequency and intensity, near islands housing major U.S. defense installations was the primary focus. Four island regions—Guam and Kwajalein Atoll in the tropical northwestern Pacific, Okinawa in the subtropical northwestern Pacific, and Oahu in the tropical north-central Pacific—were considered, as they provide unique climate and geographical characteristics that either enhance or reduce the tropical cyclone risk. Guam experiences the most frequent and severe tropical cyclones, which often originate as weak systems close to the equator near Kwajalein and sometimes track far enough north to affect Okinawa, whereas intense storms are the least frequent around Oahu. From assessments of models that simulate well the tropical Pacific climate, it was determined that, with a projected warming climate, the number of tropical cyclones is likely to decrease for Guam and Kwajalein but remain about the same near Okinawa and Oahu; however, the maximum intensity of the strongest storms may increase in most regions. The likelihood of fewer but stronger storms will necessitate new localized assessments of the risk and vulnerabilities to tropical cyclones in the North Pacific.


2010 ◽  
Vol 138 (1) ◽  
pp. 22-41 ◽  
Author(s):  
France Lajoie ◽  
Kevin Walsh

Abstract The observed features discussed in Part I of this paper, regarding the intensification and dissipation of Tropical Cyclone Kathy, have been integrated in a simple mathematical model that can produce a reliable 15–30-h forecast of (i) the central surface pressure of a tropical cyclone, (ii) the sustained maximum surface wind and gust around the cyclone, (iii) the radial distribution of the sustained mean surface wind along different directions, and (iv) the time variation of the three intensity parameters previously mentioned. For three tropical cyclones in the Australian region that have some reliable ground truth data, the computed central surface pressure, the predicted maximum mean surface wind, and maximum gust were, respectively, within ±3 hPa and ±2 m s−1 of the observations. Since the model is only based on the circulation in the boundary layer and on the variation of the cloud structure in and around the cyclone, its accuracy strongly suggests that (i) the maximum wind is partly dependent on the large-scale environmental circulation within the boundary layer and partly on the size of the radius of maximum wind and (ii) that all factors that contribute one way or another to the intensity of a tropical cyclone act together to control the size of the eye radius and the central surface pressure.


2011 ◽  
Vol 139 (9) ◽  
pp. 2689-2703 ◽  
Author(s):  
Sim D. Aberson

Four aircraft released dropwindsondes in and around tropical cyclones in the west Pacific during The Observing System Research and Predictability Experiment (THORPEX) Pacific Area Regional Campaign (T-PARC) in 2008 and the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR); multiple aircraft concurrently participated in similar missions in the Atlantic. Previous studies have treated each region separately and have focused on the tropical cyclones whose environments were sampled. The large number of missions and tropical cyclones in both regions, and additional tropical cyclones in the east Pacific and Indian Oceans, allows for the global impact of these observations on tropical cyclone track forecasts to be studied. The study shows that there are unintended global consequences to local changes in initial conditions, in this case due to the assimilation of dropwindsonde data in tropical cyclone environments. These global impacts are mainly due to the spectral nature of the model system. These differences should be small and slightly positive, since improved local initial conditions should lead to small global forecast improvements. However, the impacts on tropical cyclones far removed from the data are shown to be as large and positive as those on the tropical cyclones specifically targeted for improved track forecasts. Causes of this unexpected result are hypothesized, potentially providing operational forecasters tools to identify when large remote impacts from surveillance missions might occur.


Sign in / Sign up

Export Citation Format

Share Document