scholarly journals Assimilation of Radial Velocity from Coastal NEXRAD into HWRF for Improved Forecasts of Landfalling Hurricanes

Author(s):  
Ying Wang ◽  
Zhaoxia Pu

AbstractThe benefits of assimilating NEXRAD (Next Generation Weather Radar) radial velocity data for convective systems have been demonstrated in previous studies. However, impacts of assimilation of such high spatial and temporal resolution observations on hurricane forecasts has not been demonstrated with the NCEP (National Centers for Environmental Prediction) HWRF (Hurricane Weather and Research Forecasting) system. This study investigates impacts of NEXRAD radial velocity data on forecasts of the evolution of landfalling hurricanes with different configurations of data assimilation. The sensitivity of data assimilation results to influencing parameters within the data assimilation system, such as the maximum range of the radar data, super-observations, horizontal and vertical localization correlation length scale, and weight of background error covariances, is examined. Two hurricane cases, Florence and Michael, that occurred in the summer of 2018 are chosen to conduct a series of experiments. Results show that hurricane intensity, asymmetric structure of inland wind and precipitation, and quantitative precipitation forecasting are improved. Suggestions for implementation of operational configurations are provided.

2008 ◽  
Vol 136 (3) ◽  
pp. 945-963 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue

Abstract A new efficient dual-resolution (DR) data assimilation algorithm is developed based on the ensemble Kalman filter (EnKF) method and tested using simulated radar radial velocity data for a supercell storm. Radar observations are assimilated on both high-resolution and lower-resolution grids using the EnKF algorithm with flow-dependent background error covariances estimated from the lower-resolution ensemble. It is shown that the flow-dependent and dynamically evolved background error covariances thus estimated are effective in producing quality analyses on the high-resolution grid. The DR method has the advantage of being able to significantly reduce the computational cost of the EnKF analysis. In the system, the lower-resolution ensemble provides the flow-dependent background error covariance, while the single-high-resolution forecast and analysis provides the benefit of higher resolution, which is important for resolving the internal structures of thunderstorms. The relative smoothness of the covariance obtained from the lower 4-km-resolution ensemble does not appear to significantly degrade the quality of analysis. This is because the cross covariance among different variables is of first-order importance for “retrieving” unobserved variables from the radar radial velocity data. For the DR analysis, an ensemble size of 40 appears to be a reasonable choice with the use of a 4-km horizontal resolution in the ensemble and a 1-km resolution in the high-resolution analysis. Several sensitivity tests show that the DR EnKF system is quite robust to different observation errors. A 4-km thinned data resolution is a compromise that is acceptable under the constraint of real-time applications. A data density of 8 km leads to a significant degradation in the analysis.


2021 ◽  
Vol 149 (1) ◽  
pp. 21-40
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Chengsi Liu ◽  
Youngsun Jung

AbstractIn this study, a hybrid En3DVar data assimilation (DA) scheme is compared with 3DVar, EnKF, and pure En3DVar for the assimilation of radar data in a real tornadic storm case. Results using hydrometeor mixing ratios (CVq) or logarithmic mixing ratios (CVlogq) as the control variables are compared in the variational DA framework. To address the lack of radial velocity impact issues when using CVq, a procedure that assimilates reflectivity and radial velocity data in two separate analysis passes is adopted. Comparisons are made in terms of the root-mean-square innovations (RMSIs) as well as the intensity and structure of the analyzed and forecast storms. For pure En3DVar that uses 100% ensemble covariance, CVlogq and CVq have similar RMSIs in the velocity analyses, but errors grow faster during forecasts when using CVlogq. Introducing static background error covariance at 5% in hybrid En3DVar (with CVlogq) significantly reduces the forecast error growth. Pure En3DVar produces more intense reflectivity analyses than EnKF that more closely match the observations. Hybrid En3DVar with 50% outperforms other weights in terms of the RMSIs and forecasts of updraft helicity and is thus used in the final comparison with 3DVar and EnKF. The hybrid En3DVar is found to outperform EnKF in better capturing the intensity and structure of the analyzed and forecast storms and outperform 3DVAR in better capturing the intensity and evolution of the rotating updraft.


2008 ◽  
Vol 25 (10) ◽  
pp. 1845-1858 ◽  
Author(s):  
Mario Majcen ◽  
Paul Markowski ◽  
Yvette Richardson ◽  
David Dowell ◽  
Joshua Wurman

Abstract This note assesses the improvements in dual-Doppler wind syntheses by employing a multipass Barnes objective analysis in the interpolation of radial velocities to a Cartesian grid, as opposed to a more typical single-pass Barnes objective analysis. Steeper response functions can be obtained by multipass objective analyses; that is, multipass objective analyses are less damping at well-resolved wavelengths (e.g., 8–20Δ, where Δ is the data spacing) than single-pass objective analyses, while still suppressing small-scale (<4Δ) noise. Synthetic dual-Doppler data were generated from a three-dimensional numerical simulation of a supercell thunderstorm in a way that emulates the data collection by two mobile radars. The synthetic radial velocity data from a pair of simulated radars were objectively analyzed to a grid, after which the three-dimensional wind field was retrieved by iteratively computing the horizontal divergence and integrating the anelastic mass continuity equation. Experiments with two passes and three passes of the Barnes filter were performed, in addition to a single-pass objective analysis. Comparison of the analyzed three-dimensional wind fields to the model wind fields suggests that multipass objective analysis of radial velocity data prior to dual-Doppler wind synthesis is probably worth the added computational cost. The improvements in the wind syntheses derived from multipass objective analyses are even more apparent for higher-order fields such as vorticity and divergence, and for trajectory calculations and pressure/buoyancy retrievals.


2010 ◽  
Vol 27 (2) ◽  
pp. 319-332 ◽  
Author(s):  
Wei Li ◽  
Yuanfu Xie ◽  
Shiow-Ming Deng ◽  
Qi Wang

Abstract In recent years, the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) has developed a space and time mesoscale analysis system (STMAS), which is currently a sequential three-dimensional variational data assimilation (3DVAR) system and is developing into a sequential 4DVAR in the near future. It is implemented by using a multigrid method based on a variational approach to generate grid analyses. This study is to test how STMAS deals with 2D Doppler radar radial velocity and to what degree the 2D Doppler radar radial velocity can improve the conventional (in situ) observation analysis. Two idealized experiments and one experiment with real Doppler radar radial velocity data, handled by STMAS, demonstrated significant improvement of the conventional observation analysis. Because the radar radial wind data can provide additional wind information (even it is incomplete: e.g., missing tangential wind vector), the analyses by assimilating both radial wind data and conventional data showed better results than those by assimilating only conventional data. Especially in the case of sparse conventional data, radar radial wind data can provide significant information and improve the analyses considerably.


1998 ◽  
Vol 11 (1) ◽  
pp. 574-574
Author(s):  
A.E. Gómez ◽  
S. Grenier ◽  
S. Udry ◽  
M. Haywood ◽  
V. Sabas ◽  
...  

Using Hipparcos parallaxes and proper motions together with radial velocity data and individual ages estimated from isochones, the velocity ellipsoid has been determined as a function of age. On the basis of the available kinematic data two different samples were considered: a first one (7789 stars) for which only tangential velocities were calculated and a second one containing 3104 stars with available U, V and W velocity components and total velocities ≤ 65 km.s-1. The main conclusions are: -Mixing is not complete at about 0.8-1 Gyr. -The shape of the velocity ellipsoid changes with time getting rounder from σu/σv/σ-w = 1/0.63/0.42 ± 0.04 at about 1 Gyr to1/0.7/0.62 ±0.04 at 4-5 Gyr. -The age-velocity-dispersion relation (from the sample with kinematical selection) rises to a maximum, thereafter remaining roughly constant; there is no dynamically significant evolution of the disk after about 4-5 Gyr. -Among the stars with solar metallicities and log(age) > 9.8 two groups are identified: one has typical thin disk characteristics, the other is older than 10 Gyr and lags the LSR at about 40 km.s-1 . -The variation of the tangential velocity with age(without selection on the tangential velocity) shows a discontinuity at about 10 Gyr, which may be attributed to stars typically of the thick disk populations for ages > 10 Gyr.


Author(s):  
Yuanbo Ran ◽  
Haijiang Wang ◽  
Li Tian ◽  
Jiang Wu ◽  
Xiaohong Li

AbstractPrecipitation clouds are visible aggregates of hydrometeor in the air that floating in the atmosphere after condensation, which can be divided into stratiform cloud and convective cloud. Different precipitation clouds often accompany different precipitation processes. Accurate identification of precipitation clouds is significant for the prediction of severe precipitation processes. Traditional identification methods mostly depend on the differences of radar reflectivity distribution morphology between stratiform and convective precipitation clouds in three-dimensional space. However, all of them have a common shortcoming that the radial velocity data detected by Doppler Weather Radar has not been applied to the identification of precipitation clouds because it is insensitive to the convective movement in the vertical direction. This paper proposes a new method for precipitation clouds identification based on deep learning algorithm, which is according the distribution morphology of multiple radar data. It mainly includes three parts, which are Constant Altitude Plan Position Indicator data (CAPPI) interpolation for radar reflectivity, Radial projection of the ground horizontal wind field by using radial velocity data, and the precipitation clouds identification based on Faster-RCNN. The testing result shows that the method proposed in this paper performs better than the traditional methods in terms of precision. Moreover, this method boasts great advantages in running time and adaptive ability.


Sign in / Sign up

Export Citation Format

Share Document