scholarly journals Broadcast Meteorologists’ Views on Climate Change: A State-of-the-Community Review

2020 ◽  
Vol 12 (2) ◽  
pp. 249-262 ◽  
Author(s):  
David R. Perkins ◽  
Kristin Timm ◽  
Teresa Myers ◽  
Edward Maibach

AbstractBroadcast meteorologists—highly skilled professionals who work at the intersection between climate scientists and the public—have considerable opportunity to educate their viewers about the local impacts of global climate change. Prior research has shown that, within the broadcast meteorology community, views of climate change have evolved rapidly over the past decade. Here, using data from three census surveys of U.S. broadcast meteorologists conducted annually between 2015 and 2017, is a comprehensive analysis of broadcast meteorologists’ views about climate change. Specifically, this research describes weathercasters’ beliefs about climate change and certainty in those beliefs, perceived causes of climate change, perceived scientific consensus and interest in learning more about climate change, belief that climate change is occurring (and the certainty of that belief), belief that climate change is human caused, perceptions of any local impacts of climate change, and perceptions of the solvability of climate change. Today’s weathercaster community appears to be sharing the same viewpoints and outlooks as most climate scientists—in particular, that climate change is already affecting the United States and that present-day trends are largely a result of human activity.

2020 ◽  
pp. 1-6
Author(s):  
Thomas C. Mueller ◽  
David R. Kincer ◽  
Lawrence E. Steckel

Abstract Atrazine applied at planting is commonly used for weed control in corn. With global climate change causing an increase in river flooding in the United States over the past decade, producers need information to determine the best course of action in flooded fields treated with atrazine into which they wish to immediately plant soybean. Studies were designed to understand the effect of flooding on atrazine residual activity including atrazine concentration, soybean injury, and soybean yield. In 2012, soybean yield in flooded treatments was reduced by prior atrazine application. In 2014, soybean injury was <10% in all plots, and nonflooded, atrazine-treated soils had yields equal to the nontreated. Findings from this research indicated that it is possible for producers to consider replanting soybean after atrazine application, with appropriate changes to product labeling.


2016 ◽  
Vol 97 (5) ◽  
pp. 709-712 ◽  
Author(s):  
Bernadette Woods Placky ◽  
Edward Maibach ◽  
Joe Witte ◽  
Bud Ward ◽  
Keith Seitter ◽  
...  

Abstract Local TV meteorologists are optimally positioned to educate the public about the local implications of global climate change: They have high public trust as a source of climate science information, local TV is the #1 source of weather information in America, and most weathercasters have relevant scientific training and excellent communication skills. Surveys show that most TV meteorologists would like to report on climate change, but lack of time, lack of broadcast-quality graphics, and lack of access to appropriate experts are barriers that inhibit such coverage. With funding from the National Science Foundation and philanthropic foundations, we developed Climate Matters as an educational resources program to help interested local TV meteorologists educate their viewers about the local impacts of global climate change. Currently, the program provides more than 160 participating weathercasters nationwide with weekly localized broadcast-ready graphics and script ideas, short videos, and opportunities for brief (hour-long webinars) and more intensive (day-long seminars) professional development sessions—at no cost to participating weathercasters. We aim to more than double participation in the program over the next several years. This article will chronicle the development of Climate Matters over the past five years—beginning with a pilot test at a single news station in Columbia, South Carolina, that was shown to be effective at helping viewers better understand climate change and culminating in a comprehensive national educational resource program that is available to all interested weathercasters.


2017 ◽  
Author(s):  
Pei Hou ◽  
Shiliang Wu ◽  
Jessica L. McCarty

Abstract. Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our study, based on the GEOS-Chem model simulation, shows that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosols lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequency in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the precipitation changes over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.


Significance The United States has already committed, in an unprecedented deal with China in November 2014, to reducing its emissions to 26-28% below 2005 levels by 2025 (an improvement on its previous 17% goal). China in return pledged that its emissions would peak around 2030. This agreement is a game-changer for combating global climate change, since the two countries are the world's largest sources of carbon emissions, together accounting for 40% of the total, and were not covered under the now-expired Kyoto Protocol. Impacts Washington is poised to reclaim its place, lost after Kyoto, as a leader in global efforts against climate change. US-China climate cooperation initiatives could serve as templates for other developing countries. There are new opportunities for trilateral cooperation involving the EU. Fears that the bilateral agreement makes the UNFCCC obsolete are unwarranted, but it could preclude more ambitious efforts.


2015 ◽  
Vol 61 (1) ◽  
pp. 26-31
Author(s):  
Phan Dao ◽  
Nguyễn Thuy Lan Chi

Abstract Ho Chi Minh City (HCMC), the largest city in Vietnam, is steadily growing, certainly towards a mega city in the near future. Like other mega cities at the boom stage, it has to face with serious environmental matters insolvable for many years. The situation may be worse under the effects of global climate change, geological subsidence due to non-standard construction and sea level rise. The situation of HCMC can be damaged or even broken by resonant effects of unsolved environmental matters and latent impacts of climate change. This article shows the challenges to the urban sustainable development under the duo effect of urban environmental matters and climate change in Ho Chi Minh City. Opportunities and strategic directions to overcome the challenges are also analyzed and recommended.


Sign in / Sign up

Export Citation Format

Share Document