scholarly journals Weather risk management in marine survey campaigns for the offshore investment projects in the Polish Exclusive Economic Zone

Author(s):  
Maria Kubacka ◽  
Maciej Matczak ◽  
Maciej Kałas ◽  
Lucjan Gajewski ◽  
Marcin Burchacz

AbstractWeather is a crucial factor and the most unpredictable of all the factors determining success or failure of any offshore activity, such as investments in seabottom grid connectors (gas, energy or communication), oil & gas drilling facilities development as well as erection of offshore wind farms. Weather conditions cannot be foreseen accurately over a time horizon longer than a few days, and so arranging a realistic work schedule for such an enterprise poses a great challenge. This paper identifies and analyzes the greatest risks associated with weather conditions at sea. The importance and impact of weather on the project implementation were assessed and mitigating measures were proposed. As part of the work, a review of scientific literature was conducted, while the core conclusions were reached using the information-gathering techniques and a documentation review of the offshore projects implemented in cooperation with the Maritime Institute. The authors based their analysis on experience from survey campaigns conducted in the Baltic Sea in the areas of the investments planned for implementation. The analysis of risks associated with weather conditions is based on the statistical weather data obtained using the WAM4 model.The research reveals that it is impossible to create an accurate survey schedule for long-term offshore projects, however, using statistics for each individual hydrodynamic parameter can, to some extent, facilitate the creation of survey schedules for maritime projects.

2019 ◽  
Vol 137 ◽  
pp. 01049
Author(s):  
Anna Sobotka ◽  
Kajetan Chmielewski ◽  
Marcin Rowicki ◽  
Justyna Dudzińska ◽  
Przemysław Janiak ◽  
...  

Poland is currently at the beginning of the energy transformation. Nowadays, most of the electricity generated in Poland comes from coal combustion. However, in accordance to the European Union policy of reducing the emission of carbon dioxide to the atmosphere, there are already plans to switch to low-emission energy sources in Poland, one of which are offshore wind farms. The article presents the current regulatory environment of the offshore wind energy in Poland, along with a reference to Polish and European decarbonisation plans. In the further part of the article, the methods of determining the kinetic energy of wind and the power curve of a wind turbine are discussed. Then, on the basis of historical data of wind speeds collected in the area of the Baltic Sea, calculations are carried out leading to obtain statistical distributions of power that could be generated by an exemplary wind farm with a power capacity of 400 MW, located at the place of wind measurements. On their basis, statistical differences in the wind power generation between years, months of the year and hours of the day are analysed.


2015 ◽  
Author(s):  
Blanca Peña ◽  
Erik P. ter Brake ◽  
Kyriakos Moschonas

A number of UK Round Three offshore wind farms are located relatively far from the coast making crew transfer to the sites time consuming, more prone to interruption by weather conditions and increasingly costly. In order to optimize the functionality of a permanent accommodation vessel, Houlder has developed a dedicated Accommodation and Maintenance Wind Farm vessel based on an oil & gas work-over vessel that has been successfully deployed for many years. The Accommodation and Maintenance (A&M) Wind Farm vessel is designed to provide an infield base for Marine Wind Farm operation. The A&M vessel is designed for high operability when it comes to crew access and performance of maintenance and repair of wind turbine components in its workshops. Also general comfort on board is of high regard. As such, the seakeeping behavior of the unit is of great importance. In this publication, the seakeeping behavior is presented on the basis of numerical simulations using 3D diffraction software. The first design iteration is driven by achieving high maneuverability and good motion characteristics for operational up-time and personnel comfort on board the vessel. Model test data of the original work-over vessel has been used to validate and calibrate the numerical simulations. On this basis, parametric studies can be performed to fine-tune a potential new hull form. In turn, this could reduce the number of required physical model tests providing a potential financial benefit and optimized delivery schedule. The vessel motion behavior was tested against the acceptability criteria and crew comfort guidelines of motion behavior for a North Sea environment.


2017 ◽  
Vol 24 (s1) ◽  
pp. 59-66 ◽  
Author(s):  
Czesław Dymarski ◽  
Paweł Dymarski ◽  
Jędrzej Żywicki

Abstract The article is part of the design and research work conducted at the Gdansk University of Technology, Faculty of Ocean Engineering and Ship Technology, in cooperation with a number of other research centres, which concerns offshore wind farms planned to be built in the Polish zone of the Baltic sea in the next years. One of most difficult tasks in this project is building suitable foundations for each power unit consisting of a tower and a wind turbine mounted on its top. Since the water regions selected for building those wind farms have different depths, there was need to study different possible technical variants of this task, with the reference to both the foundation structures themselves, and the technology of their transport and setting, or anchoring. The article presents the technology of towing, from the shipyard to the setting place, and installation of the foundation having the form of a floating platform of TLP (Tension Leg Platform) type, anchored by tight chains to suction piles in the waters with depth of 60 m.


2021 ◽  
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study (Babarit et al., 2020), an energy ship design has been proposed and its energy performance has been assessed. In this second part, the aim is to estimate the energy and economic performance of such system. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion’s experts, the energy ship design of the first part has been revised and updated. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70,000 tonnes of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range 1.2 to 3.6 €/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term, and (iii) that FARWIND-produced methanol (and offshore wind farms-produced methanol) could compete with gasoline on the EU transportation fuel market in the long term.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3457
Author(s):  
Robin Brabant ◽  
Yves Laurent ◽  
Bob Jonge Poerink ◽  
Steven Degraer

Bats undertaking seasonal migration between summer roosts and wintering areas can cross large areas of open sea. Given the known impact of onshore wind turbines on bats, concerns were raised on whether offshore wind farms pose risks to bats. Better comprehension of the phenology and weather conditions of offshore bat migration are considered as research priorities for bat conservation and provide a scientific basis for mitigating the impact of offshore wind turbines on bats. This study investigated the weather conditions linked to the migratory activity of Pipistrellus bats at multiple near- and offshore locations in the Belgian part of the North Sea. We found a positive relationship between migratory activity and ambient temperature and atmospheric pressure and a negative relationship with wind speed. The activity was highest with a wind direction between NE and SE, which may favor offshore migration towards the UK. Further, we found a clear negative relationship between the number of detections and the distance from the coast. At the nearshore survey location, the number of detections was up to 24 times higher compared to the offshore locations. Our results can support mitigation strategies to reduce offshore wind farm effects on bats and offer guidance in the siting process of new offshore wind farms.


2021 ◽  
Vol 6 (5) ◽  
pp. 1191-1204
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study, an energy ship design was proposed, and its energy performance was assessed. In this second part, the aim is to update the energy and economic performance of such a system based on design progression. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion experts, the energy ship design of the first part has been revised. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70 000 t of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range EUR 1.2 to 3.6/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term and (iii) that FARWIND-produced methanol (and methanol produced by offshore wind farms) could compete with gasoline on the EU transportation fuel market in the long term.


Author(s):  
Susanne Lehner ◽  
Jochen Horstmann ◽  
Tobias Schneiderhan ◽  
Johannes Schulz-Stellenfleth

In all European countries with shallow coastal waters and strong mean wind speed at the coast the planning and construction of offshore wind farms is on the way and large parts of the North Sea and the Baltic are under investigation as to whether they are suitable for offshore parks. In this paper it is demonstrated how satellite images taken by spaceborne radar sensors can be used to determine mesoscale wind fields and thus help in the task of planning offshore wind farms. High resolution SAR images acquired by the European remote sensing satellite ERS 2 are presented which show single wind turbines (Fig. 1). The derivation of high resolution wind fields from SAR images is explained and comparisons with numerical models are presented.


2021 ◽  
Vol 43 (3) ◽  
pp. 196-205
Author(s):  
Minkyu Park ◽  
Seongjun Park ◽  
Byungcheol Seong ◽  
Yeonjeong Choi ◽  
Sokhee P. Jung

This review comprehensively reviewed floating offshore wind power generation technology, which is being newly developed as a mid- to long-term plan for wind energy. From the perspective of investment per megawatt (MW), offshore wind power is still about 50 percent more expensive than land wind power. Nevertheless, many advanced countries began to investigate the data because they wondered why they were immersed in development and investment, and why offshore wind facilities installed on the beach and floating offshore wind installed in the middle of the sea, unlike the land wind we knew. We looked at the basic principles of offshore wind power generation and the technologies used in facilities, and looked at the advantages and disadvantages of offshore wind power generation compared to land wind power generation, and what differences between fixed offshore wind farms and floating offshore wind farms. It is investigated whether it is a realistic plan to verify residents’ opposition to the installation of offshore wind power facilities, the possibility of commercialization such as high operational management costs, and the feasibility of installing facilities for renewable energy 3020 as mid- to long-term goals. In addition, it compares foreign cases with offshore wind power development complexes in Korea, marine wind power generation complexes in operation, and high wind power in Scotland, the first floating offshore wind power in Ulsan, Korea, to overcome difficulties in installing facilities and suggest directions for domestic offshore wind power development. In addition, in Korea, where there are not many countries suitable for wind power generation unlike overseas, it was decided to investigate whether floating offshore wind power could be the answer as planned. The reason why the government is pushing for investment in renewable energy such as solar power and wind power is because energy sources from the sun are eco-friendly. However, the U.S. and Europe, which started the wind power project early, are having difficulty in handling the wings of wind power generators. The energy source looked at the contradictions caused by environmental pollution in the treatment of waste, although it was environmentally friendly, and investigated how waste was treated and utilized overseas. Compared to other countries that entered the offshore wind power business earlier, domestic power generation projects are in their infancy and should focus on developing technology and co-prosperity with neighboring residents rather than on excessive expansion.


Sign in / Sign up

Export Citation Format

Share Document