scholarly journals Technology Concept of TLP Platform Towing and Installation in Waters with Depth of 60 m

2017 ◽  
Vol 24 (s1) ◽  
pp. 59-66 ◽  
Author(s):  
Czesław Dymarski ◽  
Paweł Dymarski ◽  
Jędrzej Żywicki

Abstract The article is part of the design and research work conducted at the Gdansk University of Technology, Faculty of Ocean Engineering and Ship Technology, in cooperation with a number of other research centres, which concerns offshore wind farms planned to be built in the Polish zone of the Baltic sea in the next years. One of most difficult tasks in this project is building suitable foundations for each power unit consisting of a tower and a wind turbine mounted on its top. Since the water regions selected for building those wind farms have different depths, there was need to study different possible technical variants of this task, with the reference to both the foundation structures themselves, and the technology of their transport and setting, or anchoring. The article presents the technology of towing, from the shipyard to the setting place, and installation of the foundation having the form of a floating platform of TLP (Tension Leg Platform) type, anchored by tight chains to suction piles in the waters with depth of 60 m.

2019 ◽  
Vol 26 (4) ◽  
pp. 109-116
Author(s):  
Paweł Dymarski ◽  
Czesław Dymarski ◽  
Ewelina Ciba

Abstract The article presents the results of selected works related to the wider subject of the research conducted at the Faculty of Ocean Engineering and Ship Technology of the Gdansk University of Technology, which concerns design and technology of construction, towing, and settlement on the seabed, or anchoring, of supporting structures for offshore wind farms. As a result of this research, several designs of this type of objects were developed, including two stationary types: gravitational and Jack-up, which are placed on the seabed, and two floating types: TLP and SPAR, anchored with tendons and anchors in the form of nailed or suction piles. Below presented is the stability analysis of the new floating CELL SPAR type support structure for offshore wind turbines during its installation in waters with a depth of over 65 m.


2019 ◽  
Vol 137 ◽  
pp. 01049
Author(s):  
Anna Sobotka ◽  
Kajetan Chmielewski ◽  
Marcin Rowicki ◽  
Justyna Dudzińska ◽  
Przemysław Janiak ◽  
...  

Poland is currently at the beginning of the energy transformation. Nowadays, most of the electricity generated in Poland comes from coal combustion. However, in accordance to the European Union policy of reducing the emission of carbon dioxide to the atmosphere, there are already plans to switch to low-emission energy sources in Poland, one of which are offshore wind farms. The article presents the current regulatory environment of the offshore wind energy in Poland, along with a reference to Polish and European decarbonisation plans. In the further part of the article, the methods of determining the kinetic energy of wind and the power curve of a wind turbine are discussed. Then, on the basis of historical data of wind speeds collected in the area of the Baltic Sea, calculations are carried out leading to obtain statistical distributions of power that could be generated by an exemplary wind farm with a power capacity of 400 MW, located at the place of wind measurements. On their basis, statistical differences in the wind power generation between years, months of the year and hours of the day are analysed.


2021 ◽  
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study (Babarit et al., 2020), an energy ship design has been proposed and its energy performance has been assessed. In this second part, the aim is to estimate the energy and economic performance of such system. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion’s experts, the energy ship design of the first part has been revised and updated. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70,000 tonnes of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range 1.2 to 3.6 €/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term, and (iii) that FARWIND-produced methanol (and offshore wind farms-produced methanol) could compete with gasoline on the EU transportation fuel market in the long term.


2021 ◽  
Vol 6 (5) ◽  
pp. 1191-1204
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study, an energy ship design was proposed, and its energy performance was assessed. In this second part, the aim is to update the energy and economic performance of such a system based on design progression. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion experts, the energy ship design of the first part has been revised. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70 000 t of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range EUR 1.2 to 3.6/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term and (iii) that FARWIND-produced methanol (and methanol produced by offshore wind farms) could compete with gasoline on the EU transportation fuel market in the long term.


Author(s):  
Maria Kubacka ◽  
Maciej Matczak ◽  
Maciej Kałas ◽  
Lucjan Gajewski ◽  
Marcin Burchacz

AbstractWeather is a crucial factor and the most unpredictable of all the factors determining success or failure of any offshore activity, such as investments in seabottom grid connectors (gas, energy or communication), oil & gas drilling facilities development as well as erection of offshore wind farms. Weather conditions cannot be foreseen accurately over a time horizon longer than a few days, and so arranging a realistic work schedule for such an enterprise poses a great challenge. This paper identifies and analyzes the greatest risks associated with weather conditions at sea. The importance and impact of weather on the project implementation were assessed and mitigating measures were proposed. As part of the work, a review of scientific literature was conducted, while the core conclusions were reached using the information-gathering techniques and a documentation review of the offshore projects implemented in cooperation with the Maritime Institute. The authors based their analysis on experience from survey campaigns conducted in the Baltic Sea in the areas of the investments planned for implementation. The analysis of risks associated with weather conditions is based on the statistical weather data obtained using the WAM4 model.The research reveals that it is impossible to create an accurate survey schedule for long-term offshore projects, however, using statistics for each individual hydrodynamic parameter can, to some extent, facilitate the creation of survey schedules for maritime projects.


Author(s):  
Susanne Lehner ◽  
Jochen Horstmann ◽  
Tobias Schneiderhan ◽  
Johannes Schulz-Stellenfleth

In all European countries with shallow coastal waters and strong mean wind speed at the coast the planning and construction of offshore wind farms is on the way and large parts of the North Sea and the Baltic are under investigation as to whether they are suitable for offshore parks. In this paper it is demonstrated how satellite images taken by spaceborne radar sensors can be used to determine mesoscale wind fields and thus help in the task of planning offshore wind farms. High resolution SAR images acquired by the European remote sensing satellite ERS 2 are presented which show single wind turbines (Fig. 1). The derivation of high resolution wind fields from SAR images is explained and comparisons with numerical models are presented.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1134
Author(s):  
Tobi Elusakin ◽  
Mahmood Shafiee ◽  
Tosin Adedipe ◽  
Fateme Dinmohammadi

With increasing deployment of offshore wind farms further from shore and in deeper waters, the efficient and effective planning of operation and maintenance (O&M) activities has received considerable attention from wind energy developers and operators in recent years. The O&M planning of offshore wind farms is a complicated task, as it depends on many factors such as asset degradation rates, availability of resources required to perform maintenance tasks (e.g., transport vessels, service crew, spare parts, and special tools) as well as the uncertainties associated with weather and climate variability. A brief review of the literature shows that a lot of research has been conducted on optimizing the O&M schedules for fixed-bottom offshore wind turbines; however, the literature for O&M planning of floating wind farms is too limited. This paper presents a stochastic Petri network (SPN) model for O&M planning of floating offshore wind turbines (FOWTs) and their support structure components, including floating platform, moorings and anchoring system. The proposed model incorporates all interrelationships between different factors influencing O&M planning of FOWTs, including deterioration and renewal process of components within the system. Relevant data such as failure rate, mean-time-to-failure (MTTF), degradation rate, etc. are collected from the literature as well as wind energy industry databases, and then the model is tested on an NREL 5 MW reference wind turbine system mounted on an OC3-Hywind spar buoy floating platform. The results indicate that our proposed model can significantly contribute to the reduction of O&M costs in the floating offshore wind sector.


Energy Policy ◽  
2017 ◽  
Vol 103 ◽  
pp. 179-192 ◽  
Author(s):  
Aymen Chaouachi ◽  
Catalin Felix Covrig ◽  
Mircea Ardelean

2018 ◽  
Vol 596 ◽  
pp. 213-232 ◽  
Author(s):  
MJ Brandt ◽  
AC Dragon ◽  
A Diederichs ◽  
MA Bellmann ◽  
V Wahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document