Nonacoustic Stimulation of the Middle Ear Muscle Reflex

1975 ◽  
Vol 84 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Willard E. Fee ◽  
Donald D. Dirks ◽  
Donald E. Morgan

The purpose of these experiments was to determine the incidence of the middle ear reflex in response to several nonacoustic (tactile and air jet) stimuli among subjects with normal hearing who had an acoustic reflex and selected patients with severe hearing loss. The results demonstrate that the incidence of response to tactile stimulation increases as the facial area stimulated approaches the auricle. The response to an air jet stimulus directed toward the eye is high; however, the clinical utility of the air jet may be limited because it often results in a startle reaction and head movement, and the response appears to fatigue easily. In normal listeners the response to auricular air jet stimulation probably results from both acoustic and tactile stimulation. The presence of a reflex to tactile stimulation, together with normal tympanometry constitutes strong evidence of a normal middle ear; but the absence of a reflex to acoustic or tactile stimuli still leads to an ambiguous determination of potential stapedial muscle function.

1984 ◽  
Vol 100 (2) ◽  
pp. 249-252 ◽  
Author(s):  
A. F. Dixson ◽  
K. M. Kendrick ◽  
M. A. Blank ◽  
S. R. Bloom

ABSTRACT Plasma levels of vasoactive intestinal polypeptide (VIP) in the corpora cavernosa penis and dorsal penile veins greatly exceeded those measured in the limb or caudal veins during anaesthesia in various mammals (Bennett's wallaby, Barbary sheep, cheetah, puma, sooty mangabey, pigtail macaque and chimpanzee). Tactile stimulation of the penis immediately before or during collection of blood samples resulted in an increase. In the wallaby, VIP levels (mean ± s.e.m.) in blood samples collected from the flaccid penis in the absence of tactile stimulation were very low (0·6 ± 0·5 pmol/l). A 36-fold increase in VIP occurred after manual extension of the flaccid penis (24·8 ± 3·2 pmol/l) or during manually stimulated erections (25· 1 ± 1·7 pmol/l). Electrical stimulation of erection produced no significant increase in VIP levels (2·3±0·9 pmol/l) unless accompanied by tactile stimulation (17·5±1·4 pmol/l). These studies provide the first demonstration that sensory feedback from the penis plays an important role in regulating vasoactive intestinal polypeptidergic activity. Since VIP is a potent vasodilator its release due to tactile stimuli during copulation may play a role in the maintenance of penile erection. J. Endocr. (1984) 100, 249–252


1965 ◽  
Vol 42 (2) ◽  
pp. 307-322 ◽  
Author(s):  
FRANKLIN B. KRASNE

1. Branchiomma's rapid escape from tactile stimuli is mediated by the pair of giant nerve axons which run the length of the body above the ventral nerve cord. 2. The giant neurons are connected by very stable, polarized junctions to giant motor axons. 3. The giant-fibre escape reflex fails if tactile stimuli are repeated; a non-giant system which continues to cause slower escape eventually fails also. 4. Recovery from reflex failure is slow. 5. The failure of the rapid escape reflex occurs prior to the giant fibre. It is not primarily due to sensory ending accommodation. It cannot be caused by direct stimulation of the giant fibres.


1967 ◽  
Vol 10 (3) ◽  
pp. 616-622 ◽  
Author(s):  
Alan S. Feldman

The result of acoustic stimulation of the middle ear muscles was studied using subjects in whom one or the other muscle contraction was known to be ineffective. Otosclerosis presented a condition of an intact pair of muscles but a stapes unresponsive to the contraction of the stapedius muscle. Bell’s Palsy represented a condition of a paralyzed stapedius muscle but an otherwise normal middle ear system. Through surgical intervention the ears of otosclerotic patients were altered by sectioning of the stapedius muscle and insertion of a prosthesis, while in other patients an exploratory tympanotomy verified that the middle ear was without pathology and then one or the other of the middle ear muscles was sectioned. All except one of these instances would eliminate the response of the stapedius muscle only, while the other would only eliminate the tensor tympani response. In each instance of restriction of response of the stapedius muscle the acoustic reflex could not be elicited. On the other hand, when the remainder of the system was intact and only the tensor tympani sectioned, the acoustic reflex appeared normal. These observations would strongly support the contention that the tensor tympani is not responsive to acoustic stimulation.


2013 ◽  
Vol 109 (5) ◽  
pp. 1350-1359 ◽  
Author(s):  
Yi Dong ◽  
Stefan Mihalas ◽  
Sung Soo Kim ◽  
Takashi Yoshioka ◽  
Sliman Bensmaia ◽  
...  

Tactile stimulation of the hand evokes highly precise and repeatable patterns of activity in mechanoreceptive afferents; the strength (i.e., firing rate) and timing of these responses have been shown to convey stimulus information. To achieve an understanding of the mechanisms underlying the representation of tactile stimuli in the nerve, we developed a two-stage computational model consisting of a nonlinear mechanical transduction stage followed by a generalized integrate-and-fire mechanism. The model improves upon a recently published counterpart in two important ways. First, complexity is dramatically reduced (at least one order of magnitude fewer parameters). Second, the model comprises a saturating nonlinearity and therefore can be applied to a much wider range of stimuli. We show that both the rate and timing of afferent responses are predicted with remarkable precision and that observed adaptation patterns and threshold behavior are well captured. We conclude that the responses of mechanoreceptive afferents can be understood using a very parsimonious mechanistic model, which can then be used to accurately simulate the responses of afferent populations.


1962 ◽  
Vol 39 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Roger A. Gorski ◽  
Charles A. Barraclough

ABSTRACT We have previously suggested that the failure of the androgen-sterilized, persistent-oestrous rat to ovulate, following electrical stimulation of the median eminence structures of the hypothalamus, is due to an insufficiency in adenohypophyseal LH concentration. Using the ovarian ascorbic acid technique for quantitative determination of pituitary LH content, the present studies have demonstrated that the sterile rat pituitary gland contains one-third the LH content of the normal prooestrous gland. Furthermore, not only does progesterone priming of this persistent-oestrous rat result in a 75 % increase in LH concentration, but on hypothalamic stimulation sufficient LH is released to induce ovulation. The decrease in LH concentration which accompanies ovulation in the progesterone-primed, sterile rat is approximately 45 % of the total gland content as compared with a 51 % decrease in pituitary content in the normal cyclic rat.


1982 ◽  
Vol 47 (5) ◽  
pp. 885-908 ◽  
Author(s):  
R. Gillette ◽  
M. P. Kovac ◽  
W. J. Davis

1. A population of interneurons that control feeding behavior in the mollusk Pleurobranchaea has been analyzed by dye injection and intracellular stimulation/recording in whole animals and reduced preparations. The population consists of 12-16 somata distributed in two bilaterally symmetrical groups on the anterior edge of the cerebropleural ganglion (brain). On the basis of their position adjacent to the cerebral lobes, these cells have been named paracerebral neurons (PCNs). This study concerns pme subset pf [MCs. the large, phasic ones, which have the strongest effect on the feeding rhythm (21). 2. Each PCN sends a descending axon via the ipsilateral cerebrobuccal connective to the buccal ganglion. Axon branches have not been detected in other brain or buccal nerves and hence the PCNs appear to be interneurons. 3. In whole-animal preparations, tonic intracellular depolarization of the PNCs causes them to discharge cyclic bursts of action potentials interrupted by a characteristic hyperpolarization. In all specimens that exhibit feeding behavior, the interburst hyperpolarization is invariably accompanied by radula closure and the beginning of proboscis retraction (the "bite"). No other behavorial effect of PCN stimulation has been observed. 4. In whole-animal preparations, the PCNs are excited by food and tactile stimulation of the oral veil, rhinophores, and tentacles. When such stimuli induce feeding the PCNs discharge in the same bursting pattern seen during tonic PCN depolarization, with the cyclic interburst hyperpolarization phase locked to the bit. When specimens egest an unpalatable object by cyclic buccal movements, however, the PCNs are silent. The PCNs therefore exhibit properties expected of behaviorally specific "command" neurons for feeding. 5. Silencing one or two PCNs by hyperpolarization may weaken but does not prevent feeding induced by natural food stimuli. Single PCNs therefore can be sufficient but are not necessary to induction of feeding behavior. Instead the PCNs presumably operate as a population to control feeding. 6. In isolated nervous system preparations tonic extracellular stimulation of the stomatogastric nerve of the buccal ganglion elicits a cyclic motor rhythm that is similar in general features to the PNC-induced motor rhythm. Bursts of PCN action potentials intercalated at the normal phase position in this cycle intensify the buccal rhythm. Bursts of PCN impulses intercalated at abnormal phase positions reset the buccal rhythm. The PCNs, therefore, also exhibit properties expected of pattern-generator elements and/or coordinating neurons for the buccal rhythm. 7. The PCNs are recruited into activity when the buccal motor rhythm is elicited by stomatogastric nerve stimulation or stimulation of the reidentifiable ventral white cell. The functional synergy between the PCNs and the buccal rhythm is therefore reciprocal. 8...


1995 ◽  
Vol 115 (2) ◽  
pp. 291-295 ◽  
Author(s):  
Tzong-Yang Tu ◽  
Claude Amiel ◽  
Patrice Tran Ba Huy ◽  
Philippe Herman

2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


Sign in / Sign up

Export Citation Format

Share Document