An Improved Spectral Background Subtraction Method Based on Wavelet Energy

2016 ◽  
Vol 70 (12) ◽  
pp. 1994-2004 ◽  
Author(s):  
Fengkui Zhao ◽  
Jian Wang ◽  
Aimin Wang

Most spectral background subtraction methods rely on the difference in frequency response of background compared with characteristic peaks. It is difficult to extract accurately the background components from the spectrum when characteristic peaks and background have overlaps in frequency domain. An improved background estimation algorithm based on iterative wavelet transform (IWT) is presented. The wavelet entropy principle is used to select the best wavelet basis. A criterion based on wavelet energy theory to determine the optimal iteration times is proposed. The case of energy dispersive X-ray spectroscopy is discussed for illustration. A simulated spectrum with a prior known background and an experimental spectrum are tested. The processing results of the simulated spectrum is compared with non-IWT and it demonstrates the superiority of the IWT. It has great significance to improve the accuracy for spectral analysis.

2014 ◽  
Vol 556-562 ◽  
pp. 3549-3552
Author(s):  
Lian Fen Huang ◽  
Qing Yue Chen ◽  
Jin Feng Lin ◽  
He Zhi Lin

The key of background subtraction which is widely used in moving object detecting is to set up and update the background model. This paper presents a block background subtraction method based on ViBe, using the spatial correlation and time continuity of the video sequence. Set up the video sequence background model firstly. Then, update the background model through block processing. Finally employ the difference between the current frame and background model to extract moving objects.


Radiocarbon ◽  
2017 ◽  
Vol 59 (5) ◽  
pp. 1463-1473 ◽  
Author(s):  
E Dunbar ◽  
P Naysmith ◽  
G T Cook ◽  
E M Scott ◽  
S Xu ◽  
...  

AbstractThe SUERC Radiocarbon Laboratory employs a one-step “background subtraction” method when calculating 14C ages. An interglacial wood (VIRI Sample K) is employed as the non-bone organic background standard, while a mammoth bone (LQH12) from Latton Quarry is used as the bone background standard. Results over several years demonstrate that the bone background is consistently around a factor of two higher and more variable than the wood background. As a result, the uncertainty on routine bone measurements is higher than for other sample types. This study investigates the factors that may contribute to the difference in F14C values and the higher variability. Preparations of collagen using modified Longin or ultrafiltration methods show no significant difference, nor does eliminating the collagen dissolution step. Two bone samples of known infinite age with respect to radiocarbon are compared and again no significant difference is observed. Finally, the quantity and age of the organic matter in the water used during the pretreatment is investigated and it is shown that there is insufficient organic matter in the reverse osmosis water to influence background values significantly. The attention is now on determining if incomplete demineralization could lead to contaminants being retained by the phosphate in the hydroxyapatite.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bo Han ◽  
Feilu Wang ◽  
David Salzmann ◽  
Jiayong Zhong ◽  
Gang Zhao

Abstract In this paper, we present a reanalysis of the silicon He- $\mathrm{\alpha}$ X-ray spectrum emission in Fujioka et al.’s 2009 photoionization experiment. The computations were performed with our radiative-collisional code, RCF. The central ingredients of our computations are accurate atomic data, inclusion of satellite lines from doubly excited states and accounting for the reabsorption of the emitted photons on their way to the spectrometer. With all these elements included, the simulated spectrum turns out to be in good agreement with the experimental spectrum.


Author(s):  
Jules S. Jaffe ◽  
Robert M. Glaeser

Although difference Fourier techniques are standard in X-ray crystallography it has only been very recently that electron crystallographers have been able to take advantage of this method. We have combined a high resolution data set for frozen glucose embedded Purple Membrane (PM) with a data set collected from PM prepared in the frozen hydrated state in order to visualize any differences in structure due to the different methods of preparation. The increased contrast between protein-ice versus protein-glucose may prove to be an advantage of the frozen hydrated technique for visualizing those parts of bacteriorhodopsin that are embedded in glucose. In addition, surface groups of the protein may be disordered in glucose and ordered in the frozen state. The sensitivity of the difference Fourier technique to small changes in structure provides an ideal method for testing this hypothesis.


Author(s):  
Y. H. Liu

Ordered Ni3Fe crystals possess a LI2 type superlattice similar to the Cu3Au structure. The difference in slip behavior of the superlattice as compared with that of a disordered phase has been well established. Cottrell first postulated that the increase in resistance for slip in the superlattice structure is attributed to the presence of antiphase domain boundaries. Following Cottrell's domain hardening mechanism, numerous workers have proposed other refined models also involving the presence of domain boundaries. Using the anomalous X-ray diffraction technique, Davies and Stoloff have shown that the hardness of the Ni3Fe superlattice varies with the domain size. So far, no direct observation of antiphase domain boundaries in Ni3Fe has been reported. Because the atomic scattering factors of the elements in NijFe are so close, the superlattice reflections are not easily detected. Furthermore, the domain configurations in NioFe are thought to be independent of the crystallographic orientations.


Sign in / Sign up

Export Citation Format

Share Document