EXPRESS: Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection

2017 ◽  
pp. 000370281773581
Author(s):  
Tanya L. Myers ◽  
Russell G. Tonkyn ◽  
Tyler O. Danby ◽  
Matthew S. Taubman ◽  
Bruce E. Bernacki ◽  
...  
2017 ◽  
Vol 72 (4) ◽  
pp. 535-550 ◽  
Author(s):  
Tanya L. Myers ◽  
Russell G. Tonkyn ◽  
Tyler O. Danby ◽  
Matthew S. Taubman ◽  
Bruce E. Bernacki ◽  
...  

For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.


Author(s):  
Tanya L. Myers ◽  
Brent M. DeVetter ◽  
Danielle L. Saunders ◽  
Charmayne E. Lonergan ◽  
Michael O. Yokosuk ◽  
...  

Author(s):  
T. Kaneyama ◽  
M. Naruse ◽  
Y. Ishida ◽  
M. Kersker

In the field of materials science, the importance of the ultrahigh resolution analytical electron microscope (UHRAEM) is increasing. A new UHRAEM which provides a resolution of better than 0.2 nm and allows analysis of a few nm areas has been developed. [Fig. 1 shows the external view] The followings are some characteristic features of the UHRAEM.Objective lens (OL)Two types of OL polepieces (URP for ±10' specimen tilt and ARP for ±30' tilt) have been developed. The optical constants shown in the table on the next page are figures calculated by the finite element method. However, Cs was experimentally confirmed by two methods (namely, Beam Tilt method and Krivanek method) as 0.45 ∼ 0.50 mm for URP and as 0.9 ∼ 1.0 mm for ARP, respectively. Fig. 2 shows an optical diffractogram obtained from a micrograph of amorphous carbon with URP under the Scherzer defocus condition. It demonstrates a resolution of 0.19 nm and a Cs smaller than 0.5 mm.


1983 ◽  
Vol 44 (C10) ◽  
pp. C10-31-C10-34
Author(s):  
S. Logothetidis ◽  
J. Spyridelis

2020 ◽  
Vol 54 (4) ◽  
pp. 267-276
Author(s):  
Koshi Yamamoto ◽  
Yuta Suzuki ◽  
Gochoobazar Oyunjargal ◽  
Hiroyuki Fukuda ◽  
Munkhtsetseg Oidov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document