Monitoring the Progress and Healing Status of Burn Wounds Using Infrared Spectroscopy

2020 ◽  
Vol 74 (7) ◽  
pp. 758-766
Author(s):  
Pedro A.A. Castro ◽  
Cassio A. Lima ◽  
Mychel R.P.T. Morais ◽  
Telma M.T. Zorn ◽  
Denise M. Zezell

Burns are one of the leading causes of morbidity worldwide and the most costly traumatic injuries. A better understanding of the molecular mechanisms in wound healing is required to accelerate tissue recovery and reduce the health economic impact. However, the standard techniques used to evaluate the biological events associated to wound repair are laborious, time-consuming, and/or require multiple assays/staining. Therefore, this study aims to evaluate the feasibility of Fourier transform infrared (FT-IR) spectroscopy to monitor the progress and healing status of burn wounds. Burn injuries were induced on Wistar rats by water vapor exposure and biopsied for further histopathological and spectroscopic evaluation at four time-points (3, 7, 14, and 21 days). Spectral data were preprocessed and compared by principal component analysis. Pairwise comparison of post-burn groups to each other revealed that metabolic activity induced by thermal injury decreases as the healing progresses. Higher amounts of carbohydrates, proteins, lipids, and nucleic acids were evidenced on days 3 and 7 compared to healthy skin and reduced amounts of these molecular structural units on days 14 and 21 post-burn. FT-IR spectroscopy was used to determine the healing status of a wound based on the biochemical information retained by spectral signatures in each phase of healing. Our findings demonstrate that FT-IR spectroscopy can monitor the biological events triggered by burn trauma as well as to detect the wound status including full recovery based on the spectral changes associated to the biochemical events in each phase.

2004 ◽  
Vol 70 (3) ◽  
pp. 1583-1592 ◽  
Author(s):  
Helen E. Johnson ◽  
David Broadhurst ◽  
Douglas B. Kell ◽  
Michael K. Theodorou ◽  
Roger J. Merry ◽  
...  

ABSTRACT Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm−1) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Pilleriin Peets ◽  
Karl Kaupmees ◽  
Signe Vahur ◽  
Ivo Leito

AbstractIn this study, the reflectance-FT-IR (r-FT-IR) spectroscopy is demonstrated to be a suitable option for non-invasive identification of textile fibers. A collection of known textile fibers, 61 single-component textiles from 16 different types, were analyzed, resulting in more than 4000 individual spectra. The r-FT-IR method was compared with ATR-FT-IR spectroscopy using two instrumental approaches: FT-IR-microspectrometer with ATR mode (mATR-FT-IR) and ATR-FT-IR spectrometer (ATR-FT-IR). Advantages and drawbacks of these methods were discussed. Principal component based discriminant analysis and random forest classification methods were created for the identification of textile fibers in case-study samples. It was concluded that in general, the performance of r-FT-IR is comparable with ATR-FT-IR. In particular, r-FT-IR is more successful than ATR-FT-IR in differentiating between the amide-based fibers wool, silk and polyamide. As an additional result of this work, a collection of r-FT-IR spectra of different textile fibers was compiled and made available for the scientific community.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Rahul Joshi ◽  
Ramaraj Sathasivam ◽  
Sang Un Park ◽  
Hongseok Lee ◽  
Moon S. Kim ◽  
...  

This study performed non-destructive measurements of phenolic compounds in moringa powder using Fourier Transform Infrared (FT-IR) spectroscopy within a spectral range of 3500–700 cm−1. Three major phenolic compounds, namely, kaempferol, benzoic acid, and rutin, were measured in five different varieties of moringa powder, which was approved with respect to the high-performance liquid chromatography (HPLC) method. The prediction performance of three different regression methods, i.e., partial least squares regression (PLSR), principal component regression (PCR), and net analyte signal (NAS)-based methodology, called hybrid linear analysis (HLA/GO), were compared to achieve the best prediction model. The obtained results for the PLS regression method resulted in better performance for the prediction analysis of phenolic compounds in moringa powder. The PLSR model attained a correlation coefficient () value of 0.997 and root mean square error of prediction (RMSEP) of 0.035 mg/g, respectively, which is comparatively higher than the other two regression models. Based on the results, it can be concluded that FT-IR spectroscopy in conjugation with a suitable regression analysis method could be an effective analytical tool for the non-destructive prediction of phenolic compounds in moringa powder.


Author(s):  
Maciej Strzempek ◽  
Karolina A. Tarach ◽  
Kinga Góra-Marek ◽  
Fernando Rey ◽  
Miguel Palomino ◽  
...  

Abstract In this article the results of the statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of the low aliphatic hydrocarbons in ZSM-5 (Si/Al =28 or...


Sign in / Sign up

Export Citation Format

Share Document