scholarly journals Analysis of long-term temperature monitoring of multiple wind turbines

2021 ◽  
pp. 002029402110130
Author(s):  
Xian Wang ◽  
Qian-cheng Zhao ◽  
Xue-bing Yang ◽  
Bing Zeng

The historical temperature data logged in the supervisory control and data acquisition (SCADA) system contains a wealth of information that can assist with the performance optimization of wind turbines (WTs). However, mining and using these long-term data is difficult and time-consuming due to their complexity, volume, etc. In this study, we tracked and analyzed the 5-year trends of major SCADA temperature rise variables in relation to the active power of four WTs in a real wind farm. To uncover useful information, an extended version of the bins method, which calculates the standard deviation (SD) as well as the average, is proposed and adopted. The implications of the analysis for engineering practice are discussed from multiple perspectives. The research results demonstrate a change in the patterns of the main temperature rise variables in a real wind farm, completeness of the monitoring of the WT internal temperature state, influence of wind turbine aging on temperature signals, a correlation between different measurement points, and a correlation between signals from different years. The knowledge gained from this research provides a reference for the development of more practical and comprehensive condition monitoring systems and methods, as well as better operation maintenance strategies.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3965
Author(s):  
Long Wang ◽  
Jianghai Wu ◽  
Zeling Tang ◽  
Tongguang Wang

The traditional power collection system design separately optimizes the connection topology and the cable cross sections, which may result in the inherent shortcoming of lacking the most economical solutions. In this pursuit, the present work envisages the development of an integrated design method for general wind farm power collection systems, which integrated the coupling random fork tree coding, union-find set loop identification, current and voltage drop calculation models, and a high performance optimization algorithm. The proposed coupling random fork tree coding, for the first time, realized the coupling code of the substation location, connection topology, and cable cross sections, providing the basis for the integration design of the power collection system. The optimization results for discrete and regular wind farms indicated that the proposed integration method achieved the best match of topology, substation location, and the cable cross sections, thus presenting the most economical scheme of the power collection system. Compared to the traditional two-step methods, the integration method used more branches while acquiring them, to maintain the lower number of wind turbines in each branch. Furthermore, it also employed large cross-section cables to reduce the energy loss caused by the impedance in the topology, thereby resulting in a slight increased cable cost; however, the total cost was minimized. The proposed method is very versatile and suitable for the optimization of power collection systems containing any number of wind turbines and substations, and can be combined with any evolutionary algorithm.


Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 693
Author(s):  
Anna Dóra Sæþórsdóttir ◽  
Margrét Wendt ◽  
Edita Tverijonaite

The interest in harnessing wind energy keeps increasing globally. Iceland is considering building its first wind farms, but its landscape and nature are not only a resource for renewable energy production; they are also the main attraction for tourists. As wind turbines affect how the landscape is perceived and experienced, it is foreseeable that the construction of wind farms in Iceland will create land use conflicts between the energy sector and the tourism industry. This study sheds light on the impacts of wind farms on nature-based tourism as perceived by the tourism industry. Based on 47 semi-structured interviews with tourism service providers, it revealed that the impacts were perceived as mostly negative, since wind farms decrease the quality of the natural landscape. Furthermore, the study identified that the tourism industry considered the following as key factors for selecting suitable wind farm sites: the visibility of wind turbines, the number of tourists and tourist attractions in the area, the area’s degree of naturalness and the local need for energy. The research highlights the importance of analysing the various stakeholders’ opinions with the aim of mitigating land use conflicts and socioeconomic issues related to wind energy development.


2021 ◽  
pp. 0309524X2199245
Author(s):  
Kawtar Lamhour ◽  
Abdeslam Tizliouine

The wind industry is trying to find tools to accurately predict and know the reliability and availability of newly installed wind turbines. Failure modes, effects and criticality analysis (FMECA) is a technique used to determine critical subsystems, causes and consequences of wind turbines. FMECA has been widely used by manufacturers of wind turbine assemblies to analyze, evaluate and prioritize potential/known failure modes. However, its actual implementation in wind farms has some limitations. This paper aims to determine the most critical subsystems, causes and consequences of the wind turbines of the Moroccan wind farm of Amougdoul during the years 2010–2019 by applying the maintenance model (FMECA), which is an analysis of failure modes, effects and criticality based on a history of failure modes occurred by the SCADA system and proposing solutions and recommendations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4626
Author(s):  
Faris Alatar ◽  
Ali Mehrizi-Sani

Integration of wind energy resources into the grid creates several challenges for power system dynamics. More specifically, Type-3 wind turbines are susceptible to subsynchronous control interactions (SSCIs) when they become radially connected to a series-compensated transmission line. SSCIs can cause disruptions in power generation and can result in significant damage to wind farm (WF) components and equipment. This paper proposes an approach to mitigate SSCIs using an online frequency scan, with optimized phase angles of voltage harmonic injection to maintain steady-state operation, to modify the controllers or the operating conditions of the wind turbine. The proposed strategy is simulated in PSCAD/EMTDC software on the IEEE second benchmark model for subsynchronous resonance. Simulation results demonstrate the effectiveness of this strategy by ensuring oscillations do not grow.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Payam Teimourzadeh Baboli ◽  
Davood Babazadeh ◽  
Amin Raeiszadeh ◽  
Susanne Horodyvskyy ◽  
Isabel Koprek

With the increasing demand for the efficiency of wind energy projects due to challenging market conditions, the challenges related to maintenance planning are increasing. In this paper, a condition-based monitoring system for wind turbines (WTs) based on data-driven modeling is proposed. First, the normal condition of the WTs key components is estimated using a tailor-made artificial neural network. Then, the deviation of the real-time measurement data from the estimated values is calculated, indicating abnormal conditions. One of the main contributions of the paper is to propose an optimization problem for calculating the safe band, to maximize the accuracy of abnormal condition identification. During abnormal conditions or hazardous conditions of the WTs, an alarm is triggered and a proposed risk indicator is updated. The effectiveness of the model is demonstrated using real data from an offshore wind farm in Germany. By experimenting with the proposed model on the real-world data, it is shown that the proposed risk indicator is fully consistent with upcoming wind turbine failures.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yufei Li ◽  
Bo Hu ◽  
Tao Niu ◽  
Shengpu Gao ◽  
Jiahao Yan ◽  
...  

SIMULATION ◽  
2021 ◽  
pp. 003754972110286
Author(s):  
Eduardo Pérez

Wind turbines experience stochastic loading due to seasonal variations in wind speed and direction. These harsh operational conditions lead to failures of wind turbines, which are difficult to predict. Consequently, it is challenging to schedule maintenance actions that will avoid failures. In this article, a simulation-driven online maintenance scheduling algorithm for wind farm operational planning is derived. Online scheduling is a suitable framework for this problem since it integrates data that evolve over time into the maintenance scheduling decisions. The computational study presented in this article compares the performance of the simulation-driven online scheduling algorithm against two benchmark algorithms commonly used in practice: scheduled maintenance and condition-based monitoring maintenance. An existing discrete event system specification simulation model was used to test and study the benefits of the proposed algorithm. The computational study demonstrates the importance of avoiding over-simplistic assumptions when making maintenance decisions for wind farms. For instance, most literature assumes maintenance lead times are constant. The computational results show that allowing lead times to be adjusted in an online fashion improves the performance of wind farm operations in terms of the number of turbine failures, availability capacity, and power generation.


Sign in / Sign up

Export Citation Format

Share Document