Determination of Pollutant Emissions in Car Exhaust Gases

1976 ◽  
Vol 9 (6) ◽  
pp. 221-225
Author(s):  
E. Grimm ◽  
A. Emling ◽  
D. Richardson

The ever increasing density of industrial areas and the corresponding increase of petrol driven engines emitting harmful elements such as carbon monoxide, hydrocarbons and nitric oxide in the exhaust make it necessary to substantially reduce these toxic levels to create better living conditions. Measures applied in various countries to limit these pollutions are discussed and the operating principles and design of analysers are detailed.

2018 ◽  
Vol 196 ◽  
pp. 04065
Author(s):  
Liparit Badalyan ◽  
Vladimir Kurdjukov ◽  
Alla Ovcharenko

Modern development of the construction industry involves accounting and assessment of operating conditions of structures. Excessive technological environmental impact can lead to economic losses and a decrease in the efficiency of investment projects in construction. Mobile sources emission record is an important component of the ecosystem state diagnosis in modern cities. For scientifically substantiated and reliable determination of the mass flow of the motor vehicles pollutants it is necessary to take into account the mixture formation and combustion of the working mixture in the internal combustion engine. The article describes the authors' approach to calculating the volumetric flow rate of exhaust gases based on the characteristics of the vehicle's transport operations available for operational control. Studies have shown that, when using a particular fuel, the determination of the volume flow rate of exhaust gases can be reduced to finding the power of the engine . In addition, the composition changes of the fuel (or fuel replacement) and the regulation of the effective power of the engine (by organization of traffic) allow to influence on the volume and composition of the emission of exhaust gases of vehicles and on the pollution of the urban environment in general. The results of the studies make it easier to calculate the mass of pollutant emissions by the transport stream into the outer air and can be used as preliminary data to assess the negative anthropogenic impact on the ecosystem.


Author(s):  
Benjamin D. Baird ◽  
S. R. Gollahalli

Non-circular burner geometries have shown some promise of reducing pollutant emissions form combustion systems. The use of non-axisymmetric geometries has the potential to alter the behavior of a flame through modification of the flow field. To investigate these flow field effects on combustion performance, a study of the partially premixed flames emitted from a circular burner and a 3:1 aspect ratio (major axis / minor axis) elliptical burner of equal exit area was performed. For laminar conditions, the elliptical and circular burner produced similar global emissions of carbon monoxide and nitric oxide. In turbulent flames, the elliptical burner produced a larger amount of carbon monoxide, but reduced nitric oxide production. In turbulent flames, the enhanced mixing facilitated by elliptical burners froze the CO oxidation reaction and thus increased its emission. In laminar flames, the elasticity did not significantly affect mixing rates, and thus resulted in similar CO emissions between the burners. The hypothesis on CO reaction freezing was confirmed with inflame structure measurements of CO, OH, and temperature. The decreased NO production in turbulent flame was attributed to a reduction of the flame length of the 3:1 aspect ratio elliptical burner and thus a decrease of residence time compared to the circular burner.


1976 ◽  
Vol 98 (3) ◽  
pp. 432-437 ◽  
Author(s):  
A. Hashemi ◽  
T. C. Hsieh ◽  
R. Greif

Results are derived for infrared absorption in a fundamental manner directly from the basic spectroscopic variables. Comparison with the experimental data for carbon monoxide and nitric oxide shows very good agreement. Further work is suggested which includes the effect of variable line spacing.


1992 ◽  
Vol 114 (3) ◽  
pp. 209-215 ◽  
Author(s):  
S. R. Gollahalli ◽  
R. Puri

An experimental study of the effects of diluent gas injection on the structure and pollutant emissions of a kerosene spray from a twin fluid atomizer is presented. Nitrogen and carbon dioxide were used as the diluents. Flame length, radiation emission, axial and radial temperature profiles, and the radial profiles of carbon monoxide, oxygen, nitric oxide, and soot in flame gas samples were studied. The emission index, defined as the mass ratio of the rate of the species emitted to the fuel input rate, was determined from the experimental data. Results show, at a diluent injection rate approximately equal to the atomizing air flow rate, nitrogen was more effective than carbon dioxide in reducing flame length, flame radiation, and the emission indices of carbon monoxide and soot. Although both diluents increased nitric oxide emission, the effect of carbon dioxide was weaker.


2020 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Libor Kovarik ◽  
Nicholas R. Jaegers ◽  
János Szanyi ◽  
Yong Wang

<p>Atomically dispersed Pd +2 cations with ultra-dilute loading of palladium (0.005-0.05 wt%) were anchored on anatase titania and characterized with FTIR, microscopy and catalytic tests. CO infrared adsorption produces a sharp, narrow mono-carbonyl Pd(II)-CO band at ~2,130 cm<sup>-1</sup> indicating formation of highly uniform and stable Pd+2 ions on anatase titania. The 0.05 wt% Pd/TiO<sub>2</sub> sample was evaluated for methane combustion under dry and wet (industrially relevant) conditions in the presence and absence of carbon monoxide. Notably, we find the isolated palladium atoms respond dynamically upon oxygen concentration modulation (switching-on and switching off). When oxygen is removed from the wet methane stream, palladium ions are reduced to metallic state by methane and catalyze methane steam reforming instead of complete methane oxidation. Re-admission of oxygen restores Pd<sup>+2</sup> cations and switches off methane steam reforming activity. Moreover, 0.05 wt% Pd/TiO<sub>2</sub> is a competent CO oxidation catalyst in the presence of water steam with 90% CO conversion and TOF ~ 4,000 hr<sup>-1</sup> at 260 ⁰C. </p><p>More importantly, we find that diluting 0.05 wt% Pd/titania sample with titania to ultra-low 0.005 wt% palladium loading produces a remarkably active material for nitric oxide reduction with carbon monoxide under industrially relevant conditions with >90% conversion of nitric oxide at 180 ⁰C (~460 ppm NO and 150 L/g*hr flow rate in the presence of >2% water steam) and TOF ~6,000 hr<sup>-1</sup>. Pd thus outperforms state-of-the-art rhodium containing catalysts with (15-20 times higher rhodium loading; rhodium is ~ 3 times more expensive than palladium). Furthermore, palladium catalysts are more selective towards nitrogen and produce significantly less ammonia relative to the more traditional rhodium catalysts due to lower Pd amount nd lower water-gas-shift activity. Our study is the first example of utilizing ultra-low (0.05 wt% and less) noble metal (Pd) amounts to produce heterogeneous catalysts with extraordinary activity for nitric oxide reduction. This opens up a pathway to study other Pd, Pt and Rh containing materials with ultra-low loadings of expensive noble metals dispersed on titania or titania-coated oxides for industrially relevant nitric oxide abatement.</p>


Sign in / Sign up

Export Citation Format

Share Document