Thermo-electrical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide

2019 ◽  
Vol 55 (3) ◽  
pp. 263-282 ◽  
Author(s):  
A Dorigato ◽  
A Biani ◽  
W Bonani ◽  
A Pegoretti

In this work, novel electrically conductive cyclic olefin copolymer/exfoliated graphite nanoplatelets foams were prepared through a supercritical carbon dioxide treatment starting from the corresponding unfoamed materials prepared by melt compounding, in order to investigate their thermo-electrical properties. For both unfoamed and foamed samples, the exfoliated graphite nanoplatelets introduction led to a systematic enhancement of the thermal degradation temperature. Dynamic-mechanical thermal analysis revealed that the nanofiller addition promoted an enhancement of the storage modulus and of the glass transition temperature over the whole range of the applied foaming pressures. While for unfoamed materials exfoliated graphite nanoplatelets introduction determined an important decrease of the electrical resistivity, the foaming process induced the breakage of the conductive path, with a consequent increase of electrical resistivity. Evaluation of the surface heating upon voltage application showed that the surface temperature of unfoamed materials could be noticeably increased at relatively low voltage levels, while a less pronounced surface heating could be obtained with the corresponding nanocomposite foams.

2011 ◽  
Vol 46 (9) ◽  
pp. 1029-1039 ◽  
Author(s):  
Julia A King ◽  
Michael D Via ◽  
Faith A Morrison ◽  
Kyle R Wiese ◽  
Edsel A Beach ◽  
...  

Exfoliated graphite nanoplatelets (GNP) can be added polymers to produce electrically conductive composites. In this study, varying amounts (2–15 wt%) GNP were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile, flexural, and rheological properties. The percolation threshold was approximately 4.0 vol% (6.5 wt%) GNP. The addition of GNP to polycarbonate increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 8 wt% (5.0 vol%) GNP in polycarbonate composite had a good combination of properties for electrostatic dissipative applications. The electrical resistivity and thermal conductivity were 4.0 × 107 ohm-cm and 0.37 W/m · K, respectively. The tensile modulus, ultimate tensile strength, and strain at ultimate tensile strength were 3.5 GPa, 58 MPa, and 3.5%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 108 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure polycarbonate and in samples containing up to 8 wt% GNP. PC and GNP/PC composites show shear-thinning behavior. Viscosity of the composite increased as the amount of GNP increased dueto a volume-filling filler effect. The viscosity of the GNP/PC composites are well described by a Kitano-modified Maron-Pierce model.


Sign in / Sign up

Export Citation Format

Share Document