Damage development in woven carbon fibre thermoplastic laminates with PPS and PEEK matrices: A comparative study

2016 ◽  
Vol 51 (5) ◽  
pp. 637-647 ◽  
Author(s):  
Sergey G Ivanov ◽  
Dries Beyens ◽  
Larissa Gorbatikh ◽  
Stepan V Lomov

In this work, we investigate the effect of the matrix on the mechanical performance of woven carbon fibre composites. More specifically, composites with the same 5-harness satin carbon fabric reinforcement and different thermoplastic matrices, PPS and PEEK, are compared in various mechanical tests (tensile, interlaminar fracture toughness and compression-after-impact tests). The results of tension tests show the influence of the matrix type on the development of cracks in yarns. The cracks in carbon fabric/PEEK composite appear later than in carbon fabric/PPS composite. Their density is also lower. A correlation between cumulative acoustic emission energy and transverse crack appearance in tensile tests is shown. The most evident difference is demonstrated for the Double Cantilever Beam tests and End Notch Flexure tests. The interlaminar fracture toughness for both mode I and mode II is more than 1.5 times higher for carbon fabric/PEEK laminates as compared to carbon fabric/PPS ones. The higher fracture toughness of carbon fabric/PEEK results in its higher residual compressive strength after impact (∼25%). Thus, the study concludes that the performance of textile composites is highly sensitive to the performance of the matrix. Matrices that have higher strength, ductility and fracture toughness lead to structural composites with lower crack densities, better performance in the bias direction, higher resistance to delaminations and higher residual strength after impact.

2013 ◽  
Vol 392 ◽  
pp. 73-77
Author(s):  
Helen Wu

In this study, core-shell rubber (CSR) and liquid rubber (LR) were used to modify the matrix toughness of unidirectional carbon fibre/epoxy composites. Double cantilever beam (DCB) and end notched flexure (END) tests were performed to evaluate the interlaminar fracture toughness. It was found that LR was identified to be more effective than CSR in improving GICand GIICof the composites, although fracture toughness of the CSR-modified epoxy was better than that of the LR-modified epoxy. SEM observation of post-fracture surfaces of the specimens shows that the degree of plastic deformation of matrix is well related to the rating of fracture toughness of composites for these unmodified and modified composite laminates, and is the key factor controlling the interlaminar fracture toughness of composite laminates. Further, it was confirmed that rigid fibres constrain growth of plastic zone in composites laminates, comparing with toughened bulk epoxy matrix. However, plastic zone is not limited to a single resin layer and it is capable of developing across rigid fibre layers.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


2020 ◽  
Vol 55 (11) ◽  
pp. 4717-4733 ◽  
Author(s):  
Nadiim Domun ◽  
Keith R. Paton ◽  
Bamber R. K. Blackman ◽  
Cihan Kaboglu ◽  
Samireh Vahid ◽  
...  

AbstractIn this study, the effects of adding nanofillers to an epoxy resin (EP) used as a matrix in glass fibre-reinforced plastic (GFRP) composites have been investigated. Both 1D and 2D nanofillers were used, specifically (1) carbon nanotubes (CNTs), (2) few-layer graphene nanoplatelets (GNPs), as well as hybrid combinations of (3) CNTs and boron nitride nanosheets, and (4) GNPs and boron nitride nanotubes (BNNTs). Tensile tests have shown improvements in the transverse stiffness normal to the fibre direction of up to about 25% for the GFRPs using the ‘EP + CNT’ and the ‘EP + BNNT + GNP’ matrices, compared to the composites with the unmodified epoxy (‘EP’). Mode I and mode II fracture toughness tests were conducted using double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively. In the quasi-static mode I tests, the values of the initiation interlaminar fracture toughness, $$ G_{\text{IC}}^{\text{C}} $$GICC, of the GFRP composites showed that the transfer of matrix toughness to the corresponding GFRP composite is greatest for the GFRP composite with the GNPs in the matrix. Here, a coefficient of toughness transfer (CTT), defined as the ratio of mode I initiation interlaminar toughness for the composite to the bulk polymer matrix toughness, of 0.68 was recorded. The highest absolute values of the mode I interlaminar fracture toughness at crack initiation were achieved for the GFRP composites with the epoxy matrix modified with the hybrid combinations of nanofillers. The highest value of the CTT during steady-state crack propagation was ~ 2 for all the different types of GFRPs. Fractographic analysis of the composite surfaces from the DCB and ENF specimens showed that failure was by a combination of cohesive (through the matrix) and interfacial (along the fibre/matrix interface) modes, depending on the type of nanofillers used.


1998 ◽  
Vol 7 (4) ◽  
pp. 096369359800700
Author(s):  
M. Zhang ◽  
S.E. Mason

The influences on the interlaminar fracture toughness (GIC) and ultimate tensile strength (UTS) of a cured structural carbon fibre reinforced epoxy composite of two contaminants, water and seawater, introduced prior to cure have been investigated. The results have demonstrated that the control of environmental factors such as water and seawater can have significant effects on the mechanical performance of laminate composite components during the manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document