Mechanical characterization of hexagonal boron nitride nanocomposites: A multiscale finite element prediction

2017 ◽  
Vol 52 (16) ◽  
pp. 2229-2241 ◽  
Author(s):  
Konstantinos N Spanos ◽  
Nick K Anifantis

In this study, a calculation of the elastic mechanical properties of composite materials reinforced by boron nitride nanosheets is taking place, following the finite elements approach. Composites are specifically composed of two phases of materials, the matrix material and the reinforcing phase, here, consisting of boron nitride monolayers. The simulation of these two materials as well as the interface between them were made in accordance with the micromechanics theory, examining a representative volume element. Specifically, the matrix material is considered as continuous medium and the reinforcing phase, based on its atomistic microstructure, is considered as a discrete medium and was simulated through spring-based finite elements. Something similar occurred with the simulation of the interface region, which is responsible for the load transfer between the two materials. The results of the method were compared with data from other studies and showed good agreement.

Author(s):  
M. H. Nai ◽  
C. S. Goh ◽  
S. M. L. Nai ◽  
J. Wei ◽  
M. Gupta

In this study, carbon nanotubes (CNTs) are coated with nickel (Ni) to improve the wettability of the CNT surface and metal matrix, and allow an effective load transfer from the matrix to nanotubes. Pure magnesium is used as the matrix material and different weight percentages of Ni-coated multi-walled CNTs are incorporated as the reinforcing material. The nanocomposite materials are synthesized using the powder metallurgy route followed by microwave assisted rapid sintering. Mechanical property characterizations reveal an improvement of 0.2% yield strength, ultimate tensile strength and ductility with the addition of Ni-CNTs. As such, Ni-coated CNTs can be used as a reinforcement in magnesium to improve the formability of the material for light-weight, strength-based applications.


Materials ◽  
2003 ◽  
Author(s):  
Michael H. Santare ◽  
Wenzhong Tang ◽  
John E. Novotny ◽  
Suresh G. Advani

High-density polyethylene (HDPE) was used as the matrix material for a carbon nanotube (CNT) polymer composites. Multi-wall carbon nanotube composite films were fabricated using the melt processing method. Composite samples with 0%, 1%, 3% and 5% nanotube content by weight were tested. The mechanical properties of the films were measured by the small punch test and wear resistance was measured with a block-on-ring wear tester. Results show increases in the stiffness, peak load, work-to-failure and wear resistance with increasing nanotube content.


2001 ◽  
Vol 383 ◽  
pp. 185-190
Author(s):  
P.J. Sánchez-Soto ◽  
A. Ruiz-Conde ◽  
M.C. Jiménez de Haro ◽  
J.Ma Martínez-Blanes ◽  
G. Colón

2017 ◽  
Vol 659 ◽  
pp. 31-42 ◽  
Author(s):  
P.C. Mende ◽  
Q. Gao ◽  
A. Ismach ◽  
H. Chou ◽  
M. Widom ◽  
...  

2014 ◽  
Vol 403 ◽  
pp. 110-113 ◽  
Author(s):  
J.H. Edgar ◽  
T.B. Hoffman ◽  
B. Clubine ◽  
M. Currie ◽  
X.Z. Du ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Sung Kyu Jang ◽  
Jiyoun Youn ◽  
Young Jae Song ◽  
Sungjoo Lee

Sign in / Sign up

Export Citation Format

Share Document